Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(19): 8168-8176, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38680066

ABSTRACT

Room-temperature sodium-sulfur (RT Na-S) batteries have the drawbacks of the poor shuttle effect of soluble sodium polysulfides (NaPSs) as well as slow sulfur redox kinetics, which result in poor cycling stability and low capacity, seriously affecting their extensive application. Herein, defect engineering is applied to construct rich oxygen vacancies at the interface of a TiO2 anatase/rutile homojunction (OV-TRA) to enhance sulfur affinity and redox reaction kinetics. Combining structural characterizations with electrochemical analysis reveals that OV-TRA well alleviates the shuttle effect of NaPSs and precipitates the deposition and diffusion kinetics of Na2S. Consequently, S/OV-TRA provides excellent electrochemical performance with a reversible capacity of 870 mA h g-1 at 0.1 C after 100 cycles and a long-term cycling capability of 759 mA h g-1 at 1 C after 1000 cycles. This work provides an effective interfacial defect engineering strategy to promote the application of metal oxides in RT Na-S batteries.

2.
Article in English | MEDLINE | ID: mdl-38602509

ABSTRACT

Unique active sites make single-atom (SA) catalysts promising to overcome obstacles in homogeneous catalysis but challenging due to their fixed coordination environment. Click chemistry is restricted by the low activity of more available Cu(II) catalysts without reducing agents. Herein, we develop efficient, O-coordinated SA Cu(II) directly catalyzed click chemistry. As revealed by theoretical calculations of the superior coordination structure to promote the click reaction, an organic molecule-assisted strategy is applied to prepare the corresponding SA Cu catalysts with respective O and N coordination. Although they both belong to Cu(II) centers, the O-coordinated one exhibits a 5-fold higher activity than the other and even much better activity than traditional homogeneous and heterogeneous Cu(II) catalysts. Control experiments further proved that the O-coordinated SA Cu(II) catalyst tends to be reduced by alkyne into Cu acetylide rather than the N-coordinated catalyst and thus facilitates click chemistry.

3.
Angew Chem Int Ed Engl ; 63(21): e202400625, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38556897

ABSTRACT

Single-metal atomic sites and vacancies can accelerate the transfer of photogenerated electrons and enhance photocatalytic performance in photocatalysis. In this study, a series of nickel hydroxide nanoboards (Ni(OH)x NBs) with different loadings of single-atomic Ru sites (w-SA-Ru/Ni(OH)x) were synthesized via a photoreduction strategy. In such catalysts, single-atomic Ru sites are anchored to the vacancies surrounding the pits. Notably, the SA-Ru/Ni(OH)x with 0.60 wt % Ru loading (0.60-SA-Ru/Ni(OH)x) exhibits the highest catalytic performance (27.6 mmol g-1 h-1) during the photocatalytic reduction of CO2 (CO2RR). Either superfluous (0.64 wt %, 18.9 mmol g-1 h-1; 3.35 wt %, 9.4 mmol-1 h-1) or scarce (0.06 wt %, 15.8 mmol g-1 h-1; 0.29 wt %, 21.95 mmol g-1 h-1; 0.58 wt %, 23.4 mmol g-1 h-1) of Ru sites have negative effect on its catalytic properties. Density functional theory (DFT) calculations combined with experimental results revealed that CO2 can be adsorbed in the pits; single-atomic Ru sites can help with the conversion of as-adsorbed CO2 and lower the energy of *COOH formation accelerating the reaction; the excessive single-atomic Ru sites occupy vacancies that retard the completion of CO2RR.

4.
Sci Bull (Beijing) ; 69(8): 1081-1090, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38395652

ABSTRACT

Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane (PEM) electrolyzers for green H2 production. Herein, we report a novel microdrop-confined fusion/blasting (MCFB) strategy for fabricating porous hollow IrO1-x microspheres (IrO1-x-PHM) by introducing explosive gas mediators from a NaNO3/glucose mixture. Moreover, the developed MCFB strategy is demonstrated to be general for synthesizing a series of Ir-based composites, including Ir-Cu, Ir-Ru, Ir-Pt, Ir-Rh, Ir-Pd, and Ir-Cu-Pd and other noble metals such as Rh, Ru, and Pt. The hollow structures can be regulated using different organics with NaNO3. The assembled PEM electrolyzer with IrO1-x-PHM as the anode catalyst (0.5 mg/cm2) displays an impressive polarization voltage of 1.593 and 1.726 V at current densities of 1 and 2A/cm2, respectively, outperforming commercial IrOx catalysts and most of the ever-reported iridium catalysts with such low catalyst loading. More importantly, the breakdown of the polarization loss indicates that the improved performance is due to the facilitated mass transport induced by the hollowness. This study offers a versatile platform for fabricating efficient Ir-based catalysts for PEM electrolyzers and beyond.

5.
Chem Commun (Camb) ; 60(19): 2641-2644, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38348751

ABSTRACT

Mesoporous nitrogen-doped carbon-anchored single atom Zn was synthesized through etching of ZIF-8 with 1,10-phenanthroline and subsequent pyrolysis based on the Kirkendall effect. The abundant pores and increased surface area promote CO2 adsorption and mass transfer, thus significantly improving the catalytic activity in solvent-free cycloaddition of epoxides with CO2.

6.
Adv Mater ; 36(11): e2305437, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38109742

ABSTRACT

Hetero-interface engineering has been widely employed to develop supported multicomponent catalysts for water electrolysis, but it still remains a substantial challenge for supported single atom alloys. Herein a conductive oxide MoO2 supported Ir1 Ni single atom alloys (Ir1 Ni@MoO2 SAAs) bifunctional electrocatalysts through surface segregation coupled with galvanic replacement reaction, where the Ir atoms are atomically anchored onto the surface of Ni nanoclusters via the Ir-Ni coordination accompanied with electron transfer from Ni to Ir is reported. Benefiting from the unique structure, the Ir1 Ni@MoO2 SAAs not only exhibit low overpotential of 48.6 mV at 10 mA cm-2 and Tafel slope of 19 mV dec-1 for hydrogen evolution reaction, but also show highly efficient alkaline water oxidation with overpotential of 280 mV at 10 mA cm-2 . Their overall water electrolysis exhibits a low cell voltage of 1.52 V at 10 mA cm-2 and excellent durability. Experiments and theoretical calculations reveal that the Ir-Ni interface effectively weakens hydrogen binding energy, and decoration of the Ir single atoms boost surface reconstruction of Ni species to enhance the coverage of intermediates (OH*) and switch the potential-determining step. It is suggested that this approach opens up a promising avenue to design efficient and durable precious metal bifunctional electrocatalysts.

7.
Small ; : e2309226, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126680

ABSTRACT

Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads , and oxophilic metal Bi facilitates the OHads , thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.

8.
Nat Commun ; 14(1): 4615, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528069

ABSTRACT

Electrocatalytic CO2 reduction is a typical reaction involving two reactants (CO2 and H2O). However, the role of H2O dissociation, which provides active *H species to multiple protonation steps, is usually overlooked. Herein, we construct a dual-active sites catalyst comprising atomic Cu sites and Cu nanoparticles supported on N-doped carbon matrix. Efficient electrosynthesis of multi-carbon products is achieved with Faradaic efficiency approaching 75.4% with a partial current density of 289.2 mA cm-2 at -0.6 V. Experimental and theoretical studies reveal that Cu nanoparticles facilitate the C-C coupling step through *CHO dimerization, while the atomic Cu sites boost H2O dissociation to form *H. The generated *H migrate to Cu nanoparticles and modulate the *H coverage on Cu NPs, and thus promote *CO-to-*CHO. The dual-active sites effect of Cu single-sites and Cu nanoparticles gives rise to the catalytic performance.

9.
J Am Chem Soc ; 145(36): 20000-20008, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37610355

ABSTRACT

Advances in single-atom (-site) catalysts (SACs) provide a new solution of atomic economy and accuracy for designing efficient electrocatalysts. In addition to a precise local coordination environment, controllable spatial active structure and tolerance under harsh operating conditions remain great challenges in the development of SACs. Here, we show a series of molecule-spaced SACs (msSACs) using different acid anhydrides to regulate the spatial density of discrete metal phthalocyanines with single Co sites, which significantly improve the effective active-site numbers and mass transfer, enabling one of the msSACs connected by pyromellitic dianhydride to exhibit an outstanding mass activity of (1.63 ± 0.01) × 105 A·g-1 and TOFbulk of 27.66 ± 1.59 s-1 at 1.58 V (vs RHE) and long-term durability at an ultrahigh current density of 2.0 A·cm-2 under industrial conditions for oxygen evolution reaction. This study demonstrates that the accessible spatial density of single atom sites can be another important parameter to enhance the overall performance of catalysts.

10.
Inorg Chem ; 62(33): 13400-13404, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37552508

ABSTRACT

In the field of a heterogeneous industrial catalysis process, the encapsulated structure plays a crucial role in preventing active sites from leaching during the reaction; however, related studies on the strategy to fabricate encapsulated catalysts under control remain rare. Herein, we develop an amino-assisted strategy to construct a highly stable catalyst with core-shell copper nanoparticles (NPs), namely, Cu@NC (NC represents the nitrogen-doped carbon), presenting not only excellent activity but also high durability on the hydrogenation of quinolines even in the large-scale tests, which is very vital in practical application. In contrast, in the absence of the amino group, the Cu NPs were dispersed out of the carbon surface to form Cu/NC, leading to readily lose activity in the recycling tests due to the leaching occurred during the catalytic process. This work offers a promising method to fabricate a stable catalyst to enhance durability in heterogeneous catalysis.

11.
Angew Chem Int Ed Engl ; 62(34): e202304488, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37394662

ABSTRACT

Constructing electrocatalysts with p-block elements is generally considered rather challenging owing to their closed d shells. Here for the first time, we present a p-block-element bismuth-based (Bi-based) catalyst with the co-existence of single-atomic Bi sites coordinated with oxygen (O) and sulfur (S) atoms and Bi nanoclusters (Biclu ) (collectively denoted as BiOSSA /Biclu ) for the highly selective oxygen reduction reaction (ORR) into hydrogen peroxide (H2 O2 ). As a result, BiOSSA /Biclu gives a high H2 O2 selectivity of 95 % in rotating ring-disk electrode, and a large current density of 36 mA cm-2 at 0.15 V vs. RHE, a considerable H2 O2 yield of 11.5 mg cm-2 h-1 with high H2 O2 Faraday efficiency of ∼90 % at 0.3 V vs. RHE and a long-term durability of ∼22 h in H-cell test. Interestingly, the experimental data on site poisoning and theoretical calculations both revealed that, for BiOSSA /Biclu , the catalytic active sites are on the Bi clusters, which are further activated by the atomically dispersed Bi coordinated with O and S atoms. This work demonstrates a new synergistic tandem strategy for advanced p-block-element Bi catalysts featuring atomic-level catalytic sites, and the great potential of rational material design for constructing highly active electrocatalysts based on p-block metals.

12.
Angew Chem Int Ed Engl ; 62(30): e202305639, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37254229

ABSTRACT

In photosynthesis, solar energy is harvested by photosensitizers, and then, the excited electrons transfer via a Z-Scheme mode to enzymatic catalytic centers to trigger redox reactions. Herein, we constructed a core-shell Z-scheme heterojunction of semiconductor@single-atom catalysts (SACs). The oxygen-vacancy-rich ZnO core and single-atom Co-N4 sites supported on nitrogen-rich carbon shell (SA-Co-CN) act as the photosensitizer and the enzyme-mimicking active centers, respectively. Driven by built-in electric field across the heterojunction, photoexcited electrons could rapidly (2 ps) transfer from the n-type ZnO core to the p-type SA-Co-CN shell, finally boosting the catalytic performance of the surface-exposed single-atom Co-N4 sites for peroxymonosulfate (PMS) activation under light irradiation. The synergies between photocatalysis and heterogeneous Fenton-like reaction lead to phenomenally enhanced production of various reactive oxygen species for rapid degradation of various microcontaminants in water. Experimental and theoretical results validate that the interfacial coupling of SA-Co-CN with ZnO greatly facilitates PMS adsorption and activation by reducing the adsorption energy and enhancing the cascade electron transfer processes for the photo-Fenton-like reaction.

13.
J Am Chem Soc ; 145(17): 9857-9866, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37092347

ABSTRACT

Cu is a promising electrocatalyst in CO2 reduction reaction (CO2RR) to high-value C2+ products. However, as important C-C coupling active sites, the Cu+ species is usually unstable under reduction conditions. How atomic dopants affect the performance of Cu-based catalysts is interesting to be studied. Herein, we first calculated the difference between the thermodynamic limiting potentials of CO2RR and the hydrogen evolution reaction, as well as the *CO binding energy over Cu2O doped with different metals, and the results indicated that doping atomic Gd into Cu2O could improve the performance of the catalyst effectively. On the basis of the theoretical study, we designed Gd1/CuOx catalysts. The distinctive electronic structure and large ion radii of Gd not only keep the Cu+ species stable during the reaction but also induce tensile strain in Gd1/CuOx, resulting in excellent performance of the catalysts for electroreduction of CO2 to C2+ products. The Faradic efficiency of C2+ products could reach 81.4% with a C2+ product partial current density of 444.3 mA cm-2 at -0.8 V vs a reversible hydrogen electrode. Detailed experimental and theoretical studies revealed that Gd doping enhanced CO2 activation on the catalyst, stabilized the key intermediate O*CCO, and reduced the energy barrier of the C-C coupling reaction.

14.
ACS Nano ; 17(5): 4619-4628, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36815694

ABSTRACT

Cu single-atom catalysts (Cu SACs) have been considered as promising catalysts for efficient electrocatalytic CO2 reduction reactions (ECRRs). However, the reports on Cu SACs with an asymmetric atomic interface to obtain CO are few. Herein, we rationally designed two Cu SACs with different asymmetric atomic interfaces to explore their catalytic performance. The catalyst of CuN3O/C delivers high ECRR selectivity with an FECO value of above 90% in a wide potential window from -0.5 to -0.9 V vs RHE (in particular, 96% at -0.8 V), while CuCO3/C delivers poor selectivity for CO production with a maximum FECO value of only 20.0% at -0.5 V vs RHE. Besides, CuN3O/C exhibited a large turnover frequency (TOF) up to 2782.6 h-1 at -0.9 V vs RHE, which is much better than the maximum 4.8 h-1 of CuCO3/C. Density functional theory (DFT) results demonstrate that the CuN3O site needs a lower Gibbs free energy than CuCO3 in the rate-determining step of CO desorption, leading to the outstanding performance of CuN3O/C on the process of ECRR-to-CO. This work provides an efficient strategy to improve the selectivity and activity of the ECRR via regulating asymmetric atomic interfaces of SACs by adjusting the coordination atoms.

15.
Nat Commun ; 14(1): 1092, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841816

ABSTRACT

Amorphous nano-metal catalysts often exhibit appealing catalytic properties, because the intrinsic linear scaling relationship can be broken. However, accurate control synthesis of amorphous nano-metal catalysts with desired size and morphology is a challenge. In this work, we discover that Cu(0) could be oxidized to amorphous CuxO species by supercritical CO2. The formation process of the amorphous CuxO is elucidated with the aid of machine learning. Based on this finding, a method to prepare Cu nanoparticles with an amorphous shell is proposed by supercritical CO2 treatment followed by electroreduction. The unique feature of this method is that the size of the particles with amorphous shell can be easily controlled because their size depends on that of the original crystal Cu nanoparticles. Moreover, the thickness of the amorphous shell can be easily controlled by CO2 pressure and/or treatment time. The obtained amorphous Cu shell exhibits high selectivity for C2+ products with the Faradaic efficiency of 84% and current density of 320 mA cm-2. Especially, the FE of C2+ oxygenates can reach up to 65.3 %, which is different obviously from the crystalline Cu catalysts.

16.
Adv Mater ; 35(13): e2209590, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36626852

ABSTRACT

CO2 electroreduction is of great significance to reduce CO2 emissions and complete the carbon cycle. However, the unavoidable carbonate formation and low CO2 utilization efficiency in neutral or alkaline electrolytes hinder its application at commercial scale. The development of CO2 reduction under acidic conditions provides a promising strategy, but the inhibition of the hydrogen evolution reaction is difficult. Herein, the first work to design a Ni-Cu dual atom catalyst supported on hollow nitrogen-doped carbon is reported for pH-universal CO2 electroreduction to CO. The catalyst shows a high CO Faradaic efficiency of ≈99% in acidic, neutral, and alkaline electrolytes, and the partial current densities of CO reach 190 ± 11, 225 ± 10, and 489 ± 14 mA cm-2 , respectively. In particular, the CO2 utilization efficiency under acidic conditions reaches 64.3%, which is twice as high as that of alkaline conditions. Detailed study indicates the existence of electronic interaction between Ni and Cu atoms. The Cu atoms push the Ni d-band center further toward the Fermi level, thereby accelerating the formation of *COOH. In addition, operando characterizations and density functional theory calculation are used to elucidate the possible reaction mechanism of CO2 to CO under acidic and alkaline electrolytes.

17.
Chem Sci ; 13(40): 11918-11925, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36320908

ABSTRACT

Current techno-economic evaluation manifests that the electrochemical CO2 reduction reaction (eCO2RR) to CO is very promising considering its simple two-electron transfer process, minimum cost of electricity, and low separation cost. Herein, we report a Sn-modification strategy that can tune the local electronic structure of Cu with an appropriate valence. The as-prepared catalysts can alter the broad product distribution of Cu-based eCO2RR to predominantly generate CO. CO faradaic efficiency (FE) remained above 96% in the wide potential range of -0.5 to -0.9 V vs. the reversible hydrogen electrode (RHE) with CO partial current density up to 265 mA cm-2. The catalyst also had remarkable stability. Operando experiments and density functional theory calculations demonstrated that the surface Cu δ+ sites could be modulated and stabilized after introducing Sn. The Cu δ+ sites with low positive valence were conducive to regulating the binding energy of intermediates and resulted in high CO selectivity and maintained the stability of the catalyst. Additionally, scaling up the catalyst into a membrane electrode assemble system (MEA) could achieve a high overall current of 1.3 A with exclusive and stable CO generation.

18.
Nat Commun ; 13(1): 6260, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36271080

ABSTRACT

Hydrogen evolution reaction (HER) in neutral media is of great practical importance for sustainable hydrogen production, but generally suffers from low activities, the cause of which has been a puzzle yet to be solved. Herein, by investigating the synergy between Ru single atoms (RuNC) and RuSex cluster compounds (RuSex) for HER using ab initio molecular dynamics, operando X-ray absorption spectroscopy, and operando surface-enhanced infrared absorption spectroscopy, we establish that the interfacial water governs neutral HER. The rigid interfacial water layer in neutral media would inhibit the transport of H2O*/OH* at the electrode/electrolyte interface of RuNC, but the RuSex can promote H2O*/OH* transport to increase the number of available H2O* on RuNC by disordering the interfacial water network. With the synergy of RuSex and RuNC, the resulting neutral HER performance in terms of mass-specific activity is 6.7 times higher than that of 20 wt.% Pt/C at overpotential of 100 mV.

19.
Sci Adv ; 8(39): eabq2542, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36170359

ABSTRACT

Impact glasses found in lunar soils provide a possible window into the impact history of the inner solar system. However, their use for precise reconstruction of this history is limited by an incomplete understanding of the physical mechanisms responsible for their origin and distribution and possible relationships to local and regional geology. Here, we report U-Pb isotopic dates and chemical compositions of impact glasses from the Chang'e-5 soil and quantitative models of impact melt formation and ejection that account for the compositions of these glasses. The predominantly local provenance indicated by their compositions, which constrains transport distances to <~150 kilometers, and the age-frequency distribution are consistent with formation mainly in impact craters 1 to 5 kilometers in diameter. Based on geological mapping and impact cratering theory, we tentatively identify specific craters on the basaltic unit sampled by Chang'e-5 that may have produced these glasses and compare their ages with the impact record of the asteroid belt.

20.
Angew Chem Int Ed Engl ; 61(45): e202212338, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36102497

ABSTRACT

The two-dimensional nanosheets are conducive to not only endow opened surfaces for loading active metal atoms but also boost the mass transfer for the heterogeneous reactions. The challenge is how to load and stabilize single-atoms on nanosheets in high-areal densities. This work reports an efficient micro-gas blasting (MGB) strategy to access versatile noble metal single-atoms/metal oxide nanosheets, including Ir1 /CoOx , Pd1 /CeO2 , etc. Especially for Pt/CeO2 nanosheets (Pt1 /CeO2 -S), the Pt loading is increased to 15 at%. The Pt1 /CeO2 -S catalysts from MGB are revealed to possess superior reactivity and tolerance in the model reaction of water-gas shift (WGS). The Pt1 /CeO2 -S catalyst exhibit 2-3 times reactivity that of their thicker counterpart, single-atom Pt1 /CeO2 microspheric catalyst. Moreover, the single-atom sites in Pt1 /CeO2 -S (1-10 %) catalysts are stable in a harsh WGS reaction condition of 10 % CO. This work thus paves a way to access the practical single-atom catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...