Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
J Integr Plant Biol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109961

ABSTRACT

Wheat culms, comprising four to six internodes, are critically involved in determining plant height and lodging resistance, essential factors for field performance and regional adaptability. This study revealed the regulatory function of miR319 in common wheat plant height. Repression of tae-miR319 through short tandem target mimics (STTM) caused an increased plant height, while overexpression (OE) of tae-miR319 had the opposite effect. Overexpressing a miR319-resistant target gene TaPCF8 (rTaPCF8), increased plant height. TaPCF8 acted as a transcription repressor of downstream genes TaIAAs, which interact physically with TaSPL14. The significant differences of indole-3-acetic acid (IAA) contents indicate the involvement of auxin pathway in miR319-mediated plant height regulation. Finally, we identified two TaPCF8 haplotypes in global wheat collections. TaPCF8-5A-Hap2, as per association and evolution examinations, was subjected to strong substantial selection throughout wheat breeding. This haplotype, associated with shorter plant height, aligns with global breeding requirements. Consequently, in high-yield wheat breeding, we proposed a potential molecular marker for marker-assisted selection (MAS). Our findings offer fresh perspectives into the molecular mechanisms that underlie the miR319-TaPCF8 module's regulation of plant height by orchestrating auxin signaling and biosynthesis in wheat.

2.
Chem Commun (Camb) ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113543

ABSTRACT

Triphenylphosphine (TPP) salt derivatives, with their rich chemistry of core-substitution, have emerged as promising candidates for ultralong room temperature phosphorescence (RTP) materials owing to their distinct molecular structures, high quantum efficiency and exceptional phosphorescence properties. This feature article highlights the vast potential of TPP salt derivatives in tunable RTP properties by exploring some factors such as the alkyl chains, halogen anions, through-space charge transfer states, etc., and recent advancements in multi-level information encryption, high-level anticounterfeiting tags and X-ray imaging applications. We anticipate that this article will assist in directing future analyses based on the mechanisms underlying the RTP behavior of TPP derivatives and offer guidance for the rational design of high-performance RTP materials.

3.
Nat Commun ; 15(1): 5702, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977693

ABSTRACT

Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm-2 over 1000 h with a negligible decay rate of 9.67 µV h-1.

4.
ACS Appl Mater Interfaces ; 16(28): 36705-36714, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958143

ABSTRACT

Great progress has been made in organic solar cells (OSCs) in recent years, especially after the report of the highly efficient small-molecule electron acceptor Y6. However, the relatively low open circuit voltage (VOC) and unbalanced charge mobilities remain two issues that need to be resolved for further improvement in the performance of OSCs. Herein, a wide-band-gap amorphous acceptor IO-4Cl, which possessed a shallower lowest unoccupied molecular orbital (LUMO) energy level than Y6, was introduced into the PM6:Y6 binary system to construct a ternary device. The mechanism study revealed that the introduced IO-4Cl was alloyed with Y6 to prevent the overaggregation of Y6 and offer dual channels for effective hole transportation, resulting in balanced hole and electron mobilities. Taking these advantages, an enhanced VOC of 0.894 V and an improved fill factor of 75.58% were achieved in the optimized PM6:Y6:IO-4Cl-based ternary device, yielding a promising power conversion efficiency (PCE) of 17.49%, which surpassed the 16.72% efficiency of the PM6:Y6 binary device. This work provides an alternative solution to balance the charge mobilities of PM6:Y6-based devices by incorporating an amorphous high-performance LUMO A-D-A small molecule as the third compound.

5.
ACS Appl Mater Interfaces ; 16(30): 39896-39905, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39013120

ABSTRACT

The dispersion stability of nanomaterials in lubricants significantly influences tribological performance, yet their addition as lubricant additives often presents challenges in secondary dispersion. Here, we present a straightforward method for in situ preparation of N,S-codoped CDs (N,S-CDs)-based lubricants using heterocyclic aromatic hydrocarbons containing N/S elements in poly(ethylene glycol) (PEG) base oil by a directional ultrasound strategy. Two types of N,S-CDs were successfully prepared via the directional ultrasound treatment of PEG with benzothiazole (BTA) and benzothiadiazole (BTH) separately. The resultant N,S-CDs have a uniform distribution of N and S elements and maintain good colloidal dispersion stability in PEG even after 9 months of storage. The N,S-CDs can enter the surface gap of the friction pairs and then induce a tribochemical reaction. Benefiting from the synergistic effect of N and S activating elements, a robust and stable protective film consisting of iron sulfides, iron oxides, carbon nitrides, and amorphous carbonaceous compounds is formed, thus endowing N,S-CDs-based lubricants with improved antiwear and friction-reducing performance. Compared with pure PEG, the coefficient of friction (COF) of the N,S-CDs(BTH)-based lubricant decreased to 0.108 from 0.292, accompanied by a 91.2% reduction in wear volume, and the maximum load carrying capacity increased to 450 from 150 N.

6.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062907

ABSTRACT

Rejuvenation refers to the transition from the state of mature to juvenile. Many ancient Cinnamomum camphora have aged and died due to climatic and anthropic factors. Vegetative propagation can protect valuable germplasm resources. In this study, a 2000-year-old ancient C. camphora and its 2-year-old cutting plantlets were selected as experimental materials. The results indicated that the number of leaves with palisade tissue (Pal) cell layers was different between samples, with two layers in the rejuvenated leaves (RLs) and one layer in the mature leaves (MLs) and young leaves (YLs). Indole-3-acetic acid (IAA), isopentenyladenine (iP) and isopentenyladenosine (iPR) concentrations were significantly higher in RLs than in MLs and YLs, but the abscisic acid (ABA) concentration was lower. Targeted metabolome analysis identified 293 differentially accumulated metabolites (DAMs). Meanwhile, a total of 5241 differentially expressed genes (DEGs) were identified by transcriptome sequencing. According to the KEGG analysis, there were seven important enriched pathways in the MLs, RLs and YLs, including plant hormone signal transduction (57 DEGs), plant-pathogen interaction (56 DEGs) and MAPK signaling pathway-plant (36 DEGs). KEGG enrichment conjoint analyses of DEGs and DAMs identified 16 common pathways. Integrated analyses of cytological, hormone, metabolome and transcriptome elements can provide a research basis in regard to the rejuvenation regulatory mechanism of ancient C. camphora.


Subject(s)
Cinnamomum camphora , Gene Expression Regulation, Plant , Metabolome , Plant Leaves , Transcriptome , Plant Leaves/metabolism , Plant Leaves/genetics , Cinnamomum camphora/genetics , Cinnamomum camphora/metabolism , Gene Expression Profiling , Metabolomics/methods
7.
Neuroimage ; 297: 120708, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38950664

ABSTRACT

Acting as a central hub in regulating brain functions, the thalamus plays a pivotal role in controlling high-order brain functions. Considering the impact of preterm birth on infant brain development, traditional studies focused on the overall development of thalamus other than its subregions. In this study, we compared the volumetric growth and shape development of the thalamic hemispheres between the infants born preterm and full-term (Left volume: P = 0.027, Left normalized volume: P < 0.0001; Right volume: P = 0.070, Right normalized volume: P < 0.0001). The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus exhibit higher vulnerability to alterations induced by preterm birth. The structural covariance (SC) between the thickness of thalamus and insula in preterm infants (Left: corrected P = 0.0091, Right: corrected P = 0.0119) showed significant increase as compared to full-term controls. Current findings suggest that preterm birth affects the development of the thalamus and has differential effects on its subregions. The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus are more susceptible to the impacts of preterm birth.


Subject(s)
Infant, Premature , Magnetic Resonance Imaging , Thalamus , Humans , Thalamus/growth & development , Thalamus/diagnostic imaging , Female , Male , Infant, Newborn , Infant, Premature/growth & development , Premature Birth/pathology
8.
ACS Appl Mater Interfaces ; 16(23): 30453-30461, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832492

ABSTRACT

Hydrogels are ideal for antifouling materials due to their high hydrophilicity and low adhesion properties. Herein, poly(ionic liquid) hydrogels integrated with zwitterionic copolymer-functionalized gallium-based liquid metal (PMPC-GLM) microgels were successfully prepared by a one-pot reaction. Poly(ionic liquid) hydrogels (IL-Gel) were obtained by chemical cross-linking the copolymer of ionic liquid, acrylic acid, and acrylamide, and the introduction of ionic liquid (IL) significantly increased the cross-linking density; this approach consequently enhanced the mechanical and antiswelling properties of the hydrogels. The swelling ratio of IL-Gel decreased eight times compared to the original hydrogels. PMPC-GLM microgels were prepared through grafting the zwitterionic polymer PMPC onto the GLM nanodroplet surface, which exhibited efficient antifouling performance attributed to the bactericidal effect of Ga3+ and the antibacterial effect of the zwitterionic polymer layer PMPC. Based on the synergistic effect of PMPC-GLM microgels and IL, the composite hydrogels PMPC-GLM@IL-Gel not only exhibited excellent mechanical and antiswelling properties but also showed outstanding antibacterial and antifouling properties. Consequently, PMPC-GLM@IL-Gel hydrogels achieved inhibition rates of over 90% against bacteria and more than 85% against microalgae.

9.
J Integr Plant Biol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924348

ABSTRACT

IDEAL PLANT ARCHITECTURE1 (IPA1) is a pivotal gene controlling plant architecture and grain yield. However, little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER-BINDING-LIKE 14 (TaSPL14), an IPA1 ortholog in wheat, on balancing yield traits and its regulatory mechanism in wheat (T. aestivum L.). Here, we determined that the T. aestivum GRAIN WIDTH2 (TaGW2)-TaSPL14 module influences the balance between tiller number and grain weight in wheat. Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight, whereas its knockout had the opposite effect, indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight. We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14. Based on our genetic evidence, TaGW2 acts as a positive regulator of tiller number, in addition to its known role as a negative regulator of grain weight, which is opposite to TaSPL14. Moreover, combinations of TaSPL14-7A and TaGW2-6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding. Our findings provide insight into how the TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight and its potential application in improving wheat yield.

10.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792031

ABSTRACT

Amoxicillin and sulbactam are widely used in animal food compounding. Amoxicillin-sulbactam hybrid molecules are bicester compounds made by linking amoxicillin and sulbactam with methylene groups and have good application prospects. However, the residual elimination pattern of these hybrid molecules in animals needs to be explored. In the present study, the amoxicillin-sulbactam hybrid molecule (AS group) and a mixture of amoxicillin and sulbactam (mixture group) were administered to rats by gavage, and the levels of the major metabolites of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbactam were determined by UPLC-MS/MS. The residue elimination patterns of the major metabolites in the liver, kidney, urine, and feces of rats in the AS group and the mixture group were compared. The results showed that the total amount of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and the highest concentration of sulbactam in the liver and kidney samples of the AS group and the mixture group appeared at 1 h after drug withdrawal. Between 1 h and 12 h post discontinuation, the total amount of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine in the two tissues decreased rapidly, and the elimination half-life of the AS group was significantly higher than that in the mixture group (p < 0.05); the residual amount of sulbactam also decreased rapidly, and the elimination half-life was not significantly different (p > 0.05). In 72 h urine samples, the total excretion rates were 60.61 ± 2.13% and 62.62 ± 1.73% in the AS group and mixture group, respectively. The total excretion rates of fecal samples (at 72 h) for the AS group and mixture group were 9.54 ± 0.26% and 10.60 ± 0.24%, respectively. These results showed that the total quantity of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine was eliminated more slowly in the liver and kidney of the AS group than those of the mixture group and that the excretion rate through urine and feces was essentially the same for both groups. The residual elimination pattern of the hybrid molecule in rats determined in this study provides a theoretical basis for the in-depth development and application of hybrid molecules, as well as guidelines for the development of similar drugs.


Subject(s)
Amoxicillin , Sulbactam , Tandem Mass Spectrometry , Animals , Sulbactam/urine , Sulbactam/pharmacokinetics , Sulbactam/metabolism , Amoxicillin/urine , Amoxicillin/pharmacokinetics , Amoxicillin/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Liver/metabolism , Rats, Sprague-Dawley , Kidney/metabolism , Feces/chemistry , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/pharmacokinetics , Tissue Distribution , Liquid Chromatography-Mass Spectrometry
11.
BMJ Open ; 14(5): e083213, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772884

ABSTRACT

BACKGROUND: Randomised controlled trials (RCTs) are the predominant type in acupuncture clinical research, and the publications have increased rapidly in recent years, but there is a prevalence of the high risk of bias and poor methodological design in acupuncture RCTs. Clinical trial registration can improve the transparency and credibility of studies by disclosing key information in advance. However, the registration in acupuncture RCTs is not satisfactory, as there is widespread of the under-registration, inconsistency with published studies and insufficient disclosure of key methodological information. Whether registration can reduce the risk of bias in acupuncture RCTs and improve data transparency has not been fully explored. Therefore, we constructed this study to investigate the association between registration and risk of bias and data sharing level in acupuncture RCTs. METHODS: Seven databases including MEDLINE, EMBASE, CENTRAL, CBM, CNKI, Wanfang and VIP databases will be systematically searched between 1 January 2014 and 31 March 2024, for acupuncture RCTs. Two reviewers will independently extract data using a predefined standardised format and perform secondary validation. The characteristics and data sharing level of the included studies will be summarised. The risk of bias of included RCTs will be assessed by the revised Cochrane risk-of-bias tool for randomised trials. The risk of bias and registration in acupuncture RCTs will be analysed by logistic or quantile regression analyses (depending on the number of minimum events). The data sharing level and registration will be analysed by quantile regression analyses. ETHICS AND DISSEMINATION: As the systematic review aims to consolidate info from published sources, ethical approval is not necessary for this study. The study's findings will be submitted to a peer-reviewed academic journal and disseminated via conference presentations. This protocol has been registered in Open Science Framework Registries.


Subject(s)
Acupuncture Therapy , Bias , Randomized Controlled Trials as Topic , Systematic Reviews as Topic , Humans , Acupuncture Therapy/methods , Research Design , Registries
12.
Environ Sci Technol ; 58(22): 9471-9486, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776077

ABSTRACT

To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.


Subject(s)
Wastewater , Water Purification , Electrodes , Pilot Projects , Waste Disposal, Fluid/methods
13.
Toxicon ; 244: 107755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740097

ABSTRACT

Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.


Subject(s)
Apoptosis , Carps , Coumaric Acids , Inflammation , Ivermectin , Liver , Oxidative Stress , Animals , Coumaric Acids/pharmacology , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Apoptosis/drug effects , Inflammation/drug therapy , Dietary Supplements , Antioxidants/pharmacology
14.
Small ; : e2401019, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757438

ABSTRACT

As a sustainable energy technology, electrocatalytic energy conversion requires electrocatalysts, which greatly motivates the exploitation of high-performance electrocatalysts based on nonprecious metals. Molybdenum-based nanomaterials have demonstrated promise as electrocatalysts because of their unique physiochemical and electronic properties. Among them, atomic Mo catalysts, also called Mo-based single-atom catalysts (Mo-SACs), have the most accessible active sites and tunable microenvironments and are thrivingly explored in various electrochemical conversion reactions. A timely review of such rapidly developing topics is necessary to provide guidance for further exploration of optimized Mo-SACs toward electrochemical energy technologies. In this review, recent advances in the synthetic strategies for Mo-SACs are highlighted, focusing on the microenvironment engineering of Mo atoms. Then, the representative achievements of their applications in various electrocatalytic reactions involving the N2, H2O, and CO2 cycles are summarized by combining experimental and computational results. Finally, prospects for the future development of Mo-SACs in electrocatalysis are provided and the key challenges that require further investigation and optimization are highlighted.

15.
Langmuir ; 40(17): 8992-9000, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38634657

ABSTRACT

The present study utilizes styrene as a raw material to prepare hyper-cross-linked polystyrene nanospheres (HPSs) through the Friedel-Crafts reaction, establishing stable covalent bond structures within the polymer chains. The hydrophilic polystyrene nanospheres─TMA@SHPSs were successfully synthesized via sulfonation and ion exchange reactions, demonstrating exceptional properties in reducing friction and wear. Compared with pure water, the addition of 4.0 wt % TMA@SHPSs results in a 62.2% reduction in the friction coefficient, accompanied by a significant decrease to 1.17 × 105 µm3 in wear volume. The results demonstrate that TMA@SHPSs, as water-based lubrication additives, generate composite protective films (tribo-chemical protective films and physical protective films) during the friction process, which effectively prevents direct contact between the friction pairs and achieves remarkable antifriction and antiwear effects. The results of the antimicrobial activity test indicate that TMA@SHPSs demonstrate exceptional antibacterial efficacy due to the bacteriostatic effect induced by hydration and the bactericidal properties of quaternary ammonium cations.

16.
Fish Shellfish Immunol ; 149: 109575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663463

ABSTRACT

Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 µg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-ß1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1ß. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.


Subject(s)
Apoptosis , Carps , Coumaric Acids , Fish Diseases , Inflammation , Ivermectin , Oxidative Stress , Animals , Carps/immunology , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/toxicity , Oxidative Stress/drug effects , Coumaric Acids/pharmacology , Fish Diseases/chemically induced , Fish Diseases/immunology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/veterinary , Apoptosis/drug effects , Kidney Diseases/veterinary , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/immunology , Kidney/drug effects , Kidney/pathology , Random Allocation , Animal Feed/analysis
17.
Zygote ; 32(2): 175-182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629180

ABSTRACT

Intracytoplasmic sperm injection (ICSI) is a technique that directly injects a single sperm into the cytoplasm of mature oocytes. Here, we explored the safety of single-sperm cryopreservation applied in ICSI. This retrospective study enrolled 186 couples undergoing ICSI-assisted pregnancy. Subjects were allocated to the fresh sperm (group A)/single-sperm cryopreservation (group B) groups based on sperm type, with their clinical baseline/pathological data documented. We used ICSI-compliant sperm for subsequent in vitro fertilization and followed up on all subjects. The recovery rate/cryosurvival rate/sperm motility of both groups, the pregnancy/outcome of women receiving embryo transfer, and the delivery mode/neonatal-related information of women with successful deliveries were recorded. The clinical pregnancy rate, cumulative clinical pregnancy rate, abortion rate, ectopic pregnancy rate, premature delivery rate, live birth delivery rate, neonatal birth defect rate, and average birth weight were analyzed. The two groups showed no significant differences in age, body mass index, ovulation induction regimen, sex hormone [anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH)/luteinizing hormone (LH)] levels, or oocyte retrieval cycles. The sperm recovery rate (51.72%-100.00%) and resuscitation rate (62.09% ± 16.67%) in group B were higher; the sperm motility in the two groups demonstrated no significant difference and met the ICSI requirements. Group B exhibited an increased fertilization rate, decreased abortion rate, and increased safety versus group A. Compared with fresh sperm, the application of single-sperm cryopreservation in ICSI sensibly improved the fertilization rate and reduced the abortion rate, showing higher safety.


Subject(s)
Cryopreservation , Pregnancy Rate , Sperm Injections, Intracytoplasmic , Sperm Motility , Spermatozoa , Humans , Sperm Injections, Intracytoplasmic/methods , Female , Cryopreservation/methods , Male , Pregnancy , Adult , Retrospective Studies , Spermatozoa/physiology , Semen Preservation/methods , Pregnancy Outcome , Embryo Transfer/methods , Fertilization in Vitro/methods
18.
BMC Anesthesiol ; 24(1): 131, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580903

ABSTRACT

BACKGROUND: With the increasing number of bariatric surgeries, the high incidence of postoperative nausea and vomiting (PONV) associated with this surgery has also gradually attracted attention. Among the common bariatric surgery methods, patients undergoing sleeve gastrectomy (SG) have the highest incidence of nausea and vomiting. The mechanism of occurrence of PONV is very complex. This study aims to explore the influencing factors of PONV in patients undergoing laparoscopic sleeve gastrectomy (LSG) and construct a nomogram prediction model based on these factors. METHODS: With the approval of the Ethics Committee, the electronic medical records of patients who underwent LSG from July 2022 to May 2023 were collected retrospectively. RESULTS: A total of 114 patients with complete medical records who underwent LSG from July 2022 to May 2023 were included in this study. Among them, 46 patients developed PONV, resulting in a PONV incidence rate of 40.4%. Multivariate logistic regression analysis revealed that female gender, the use of inhalation anesthesia, and operation time ≥ 120 min were risk factors for PONV in LSG. Additionally, the use of more than two kinds of antiemetic drugs was identified as a protective factor. Based on these factors, a nomogram model was constructed. CONCLUSION: PONV in patients undergoing LSG is related to gender, type of anesthesia, duration of surgery, and combination therapy with antiemetic drugs. The nomogram prediction model constructed in this study demonstrates high accuracy and discrimination in predicting the occurrence of PONV in patients undergoing LSG.


Subject(s)
Antiemetics , Laparoscopy , Humans , Female , Postoperative Nausea and Vomiting/drug therapy , Antiemetics/therapeutic use , Retrospective Studies , Gastrectomy/adverse effects , Gastrectomy/methods , Laparoscopy/adverse effects , Laparoscopy/methods
19.
J Environ Sci (China) ; 143: 47-59, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644023

ABSTRACT

Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.


Subject(s)
Apoptosis , Deer , Diethylhexyl Phthalate , Oxidative Stress , Animals , Apoptosis/drug effects , Diethylhexyl Phthalate/toxicity , Oxidative Stress/drug effects , Peroxiredoxin VI/metabolism , Reactive Oxygen Species/metabolism , Endocrine Disruptors/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL