Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Front Bioeng Biotechnol ; 12: 1429574, 2024.
Article in English | MEDLINE | ID: mdl-39376545

ABSTRACT

Individuals with transfemoral lower limb amputations walk with adapted gait. These kinetic and kinematic compensatory strategies will manifest as differences in muscle recruitment patterns. It is important to characterize these differences to understand the reduced endurance, reduced functionality, and progression of co-morbidities in this population. This study aims to characterize muscle recruitment during gait of highly functional individuals with traumatic transfemoral amputations donning state-of-the-art prosthetics compared to able-bodied controls. Inverse dynamic and static optimisation methods of musculoskeletal modelling were used to quantify muscle forces of the residual and intact limb over a gait cycle for 11 individuals with traumatic transfemoral amputation and for 11 able-bodied controls. Estimates of peak muscle activation and impulse were calculated to assess contraction intensity and energy expenditure. The generalized estimation equation method was used to compare the maximum values of force, peak activation, and impulse of the major muscles. The force exhibited by the residual limb's iliacus, psoas major, adductor longus, tensor fasciae latae and pectineus is significantly higher than the forces in these muscles of the intact contralateral limb group and the able-bodied control group (p < 0.001). These muscles appear to be recruited for their flexor moment arm, indicative of the increased demand due to the loss of the plantar flexors. The major hip extensors are recruited to a lesser degree in the residual limb group compared to the intact limb group (p < 0.001). The plantar flexors of the intact limb appear to compensate for the amputated limb with significantly higher forces compared to the able-bodied controls (p = 0.01). Significant differences found in impulse and peak activation consisted of higher values for the limbs (residual and/or intact) of individuals with transfemoral lower limb amputations compared to the able-bodied controls, demonstrating an elevated cost of gait. This study highlights asymmetry in hip muscle recruitment between the residual and the intact limb of individuals with transfemoral lower limb amputations. Overall elevated impulse and peak activation in the limbs of individuals with transfemoral amputation, compared to able-bodied controls, may manifest in the reduced walking endurance of this population. This demand should be minimised in rehabilitation protocols.

2.
ACS Appl Mater Interfaces ; 16(34): 45252-45264, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39139068

ABSTRACT

Humidity-sensor-based fully contactless respiratory monitoring can eliminate the discomfort and infection risks associated with any wearable device. However, challenges in the facile fabrication of highly sensitive humidity sensors continue to hinder their widespread application for fully contactless respiratory monitoring. In this study, we introduce a simple method to fabricate highly sensitive humidity sensors. Our method employs laser-induced graphene (LIG) on an ethanol-soaked polyimide (PI) film as the electrode of the humidity sensor. The ethanol-soaked PI between adjacent LIG electrodes functions as the sensing material, enabling ion-conductive humidity sensing. Compared to the LIG humidity sensors fabricated on untreated PI films, LIG humidity sensors fabricated on ethanol-soaked PI films exhibit superior performance with higher linearity (R2 = 0.9936), reduced hysteresis (ΔH = 5.1% RH), and increased sensitivity (0.65%/RH). Notably, the LIG humidity sensor fabricated on the ethanol-soaked PI film can detect a person's breathing from a distance of 30 cm, a capability not achieved by sensors fabricated on untreated PI films. Moreover, incorporating these LIG humidity sensors into an array further enhances both the detection distance and the sensitivity for respiratory monitoring. Experimental results demonstrate that the LIG humidity sensor array can be employed for fully contactless on-bed respiration monitoring and for continuous, fully contactless monitoring of the respiratory rate during treadmill exercise. These results highlight the great potential of our LIG humidity sensors for various practical applications in medicine and sports.


Subject(s)
Ethanol , Graphite , Humidity , Lasers , Wearable Electronic Devices , Ethanol/chemistry , Humans , Graphite/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Electrodes , Resins, Synthetic/chemistry
3.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125776

ABSTRACT

Heat shock proteins (HSPs) play an important role in all living organisms under stress conditions by acting as molecular chaperones. The expression of different HSPs during stress varies depending on their protective functions and anti-apoptotic activities. The application of HSPs improves the efficiency and decreases the economic cost of animal breeding. By upregulating the expression of HSPs, feed supplements can improve stress tolerance in farm animals. In addition, high expression of HSPs is often a feature of tumor cells, and inhibiting the expression of HSPs is a promising novel method for killing these cells and treating cancers. In the present review, the findings of previous research on the application of HSPs in animal breeding and veterinary medicine are summarized, and the knowledge of the actions of HSPs in animals is briefly discussed.


Subject(s)
Heat-Shock Proteins , Animals , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Breeding/methods , Stress, Physiological , Heat-Shock Response
4.
iScience ; 27(7): 110167, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38974973

ABSTRACT

Advancing biomagnetic measurement capabilities requires a nuanced understanding of sensor performance beyond traditional metrics. This study introduces Biomagnetism Evaluation via Simulated Testing (BEST), a novel methodology combining a current dipole model simulating cardiac biomagnetic fields with a convolutional neural network. Our investigation reveals that optimal sensor array performance is achieved when sensors are in close proximity to the magnetic source, with a shorter effective domain. Contrary to common assumptions, the bottom edge length of the sensor has a negligible impact on array performance. BEST provides a versatile framework for exploring the influence of diverse technical indicators on biomagnetic sensor performance, offering valuable insights for sensor development and selection.

6.
J Phys Condens Matter ; 36(42)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38848728

ABSTRACT

The exploration of the superconducting properties of antiferromagnetic parent compounds containing transition metals under pressure provides a unique idea for finding and designing superconducting materials with better performance. In this paper, the close relationship between the possible superconductivity and structure phase transition of the typical van der Waals layered material 1T-CrSe2induced by pressure is studied by means of electrical transport and x-ray diffraction for the first time. We introduce the possibility of pressure-induced superconductivity at 20 GPa, with a criticalTcof approximately at 4 K. The superconductivity persists up to the highest measured pressure of 70 GPa, with a maximumTc∼ 5 K at 24 GPa. We observed a structure phase transition fromP-3m1 toC2/mspace group in the range of 9.4-11.7 GPa. The results show that the structural phase transition leads to the metallization of 1T-CrSe2and the further pressure effect makes the superconductivity appear in the new structure. The material undergoes a transition from a two-dimensional layered structure to a three-dimensional structure under pressure. This is the first time that possible superconductivity has been observed in 1T-CrSe2.

7.
Front Vet Sci ; 11: 1383262, 2024.
Article in English | MEDLINE | ID: mdl-38737458

ABSTRACT

Intensive poultry farming faces challenges like gut inflammation in the absence of antibiotics, resulting in reduced productivity, heightened susceptibility to enteric diseases, and other complications. Alternative strategies are needed to manage inflammation and maintain sustainable poultry production. Yaks living in high-altitude hypoxic environments have specialized gut microbes. However, yak probiotics remain largely uncharacterized. We previously isolated a strain of Bacillus pumilus (named TS2) from yaks and demonstrated its potential as a probiotic in vitro. Therefore, in this study, we evaluated the in vivo growth-promoting, antioxidant, immune, and anti-inflammatory effects of Bacillus pumilus isolated from yaks in broilers. We demonstrated the safety of TS2 isolated from yaks in broilers. Furthermore, we found that TS2 increased the average daily weight gain (ADWG) and reduced the feed conversion ratio (FCR). Supplementation with TS2 also improved the mucosal morphology, the ratio of villi to crypt cells, and enzyme activity. High-throughput sequencing showed that the abundance of Lactobacillus was higher in the TS2 treated broilers. Importantly, the serum level of malondialdehyde (MDA) was reduced and the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity were increased in the low-dose TS2 group, while the inflammatory factors interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were downregulated compared with the control group. We demonstrated that TS2 supplementation can increase the overall growth performance and ameliorate the blood parameters related to inflammation and immunity in broilers.

8.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612498

ABSTRACT

Sericin derived from the white cocoon of Bombyx mori has been attracting more attention for its utilization in food, cosmetics, and biomedicine. The potential health benefits of natural carotenoids for humans have also been well-established. Some rare strains of Bombyx mori (B. mori) produce yellow-red cocoons, which endow a potential of natural carotenoid-containing sericin. We hypothesized that natural carotenoid-containing sericin from yellow-red cocoons would exhibit better properties compared with white cocoon sericin. To investigate the physicochemical attributes of natural carotenoid-containing sericin, we bred two silkworm strains from one common ancestor, namely XS7 and XS8, which exhibited different cocoon colors as a result of the inconsistent distribution of lutein and ß-carotene. Compared with white cocoon sericin, the interaction between carotenoids and sericin molecules in carotenoid-containing sericin resulted in a unique fluorescence emission at 530, 564 nm. The incorporation of carotenoids enhanced the antibacterial effect, anti-cancer ability, cytocompatibility, and antioxidant of sericin, suggesting potential wide-ranging applications of natural carotenoid-containing sericin as a biomass material. We also found differences in fluorescence characteristics, antimicrobial effects, anti-cancer ability, and antioxidants between XS7 and XS8 sericin. Our work for the first time suggested a better application potential of natural carotenoid-containing sericin as a biomass material than frequently used white cocoon sericin.


Subject(s)
Bombyx , Sericins , Humans , Animals , Carotenoids/pharmacology , Sericins/pharmacology , Antioxidants/pharmacology , beta Carotene/pharmacology
9.
Hypertens Res ; 47(6): 1697-1706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553645

ABSTRACT

The current research on the relationship between 24-h central pressure and 24-h brachial pressure with left ventricular hypertrophy (LVH) is characterised by limited sample size and inconsistent findings. Furthermore, the association has never been explored in chronic kidney disease (CKD). A multicentre, cross-sectional study among non-dialysis patients with CKD was conducted. All participants underwent brachial and central ambulatory blood pressure monitoring using MobilO-Graph PWA, while trained cardiologists performed echocardiography. In this study, 2117 non-dialysis patients with CKD were examined. 24-h central systolic blood pressure with c2 calibration (24-h c2SBP) demonstrated a stronger association with left ventricular mass index and LVH compared with 24-h brachial systolic blood pressure (24-h bSBP) in the univariate and multivariate regression analyses. The multivariate net reclassification index (NRI) analysis revealed that 24-h c2SBP exhibited greater discriminatory power over 24-h bSBP (NRI = 0.310, 95% CI [0.192-0.429], P < 0.001). Applying 130/135 mmHg as the threshold for 24-h bSBP/c2SBP to cross-classify, the patients were divided into concordant normotension (1509 individuals), isolated brachial hypertension (155 individuals), isolated central hypertension (11 individuals), and concordant hypertension (442 individuals). With concordant normotension as the reference, the multivariable-adjusted ORs were 0.954 (95% CI, 0.534-1.640; P = 0.870) for isolated brachial hypertension and 2.585 (95%CI, 1.841-3.633; P < 0.001) for concordant hypertension. Among non-dialysis patients with CKD, 24-h c2SBP exhibits greater efficacy in identifying the presence of LVH compared with 24-h bSBP. The presence of LVH was greater in cases of concordant hypertension compared with cases of isolated brachial hypertension and concordant normotension.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Blood Pressure , Hypertrophy, Left Ventricular , Renal Insufficiency, Chronic , Humans , Male , Female , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Middle Aged , Cross-Sectional Studies , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/complications , Aged , Blood Pressure/physiology , Adult , Echocardiography , Hypertension/physiopathology , Hypertension/complications
10.
Nanoscale Adv ; 6(4): 1272, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38356637

ABSTRACT

[This corrects the article DOI: 10.1039/D1NA00342A.].

12.
Anal Chim Acta ; 1288: 342044, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220315

ABSTRACT

Cell surface glycans (CSGs) are essential for cell recognition, adhesion, and invasion, and they also serve as disease biomarkers. Traditional CSG recognition using lectins has limitations such as limited specificity, low stability, high cytotoxicity, and multivalent binding. Aptamers, known for their specific binding capacity to target molecules, are increasingly being employed in the biosensing of CSGs. Aptamers offer the advantage of high flexibility, small size, straightforward modification, and monovalent recognition, enabling their integration into the profiling of CSGs on living cells. In this review, we summarize representative examples of aptamer-based CSG biosensing and identify two strategies for harnessing aptamers in CSG detection: direct recognition based on aptamer-CSG binding and indirect recognition through protein localization. These strategies enable the generation of diverse signals including fluorescence, electrochemical, photoacoustic, and electrochemiluminescence signals for CSG detection. The advantages, challenges, and future perspectives of using aptamers for CSG biosensing are also discussed.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Cell Membrane/metabolism
13.
Poult Sci ; 103(3): 103415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215508

ABSTRACT

Inflammatory processes are often accompanied by oxidative stress and lipid peroxidation, which might lead to cellular and organ damage. Carnosic acid (CA), an active component found in rosemary, exhibits pharmacological properties including antioxidative, anti-inflammatory, and antiviral effects. The aim of this research was to investigate whether CA can mitigate lipopolysaccharide (LPS)-induced oxidative stress and inflammatory responses in poultry and to understand its underlying mechanisms. We administered CA to broiler chickens via oral gavage and treated them with LPS, followed by analysis of the effects of different dosages of CA on body weight, antioxidative capacity, and inflammatory factors. Carnosic acid had no significant impact on the body weight of broiler chickens. However, serum analysis indicated that the middle dose of CA effectively enhanced the antioxidative capacity and reduced levels of oxidative stress and inflammation-related factors. Moreover, in the liver, CA demonstrated the ability to regulate the expression of proteins such as heat shock protein 60 (HSP60), heat shock protein 70 (HSP70), and P38 mitogen-activated protein kinase (P38), suggesting its protective role against liver damage induced by LPS. In the intestinal tract of broiler chickens, CA regulated the expression and localization of proteins including HSP60, HSP70, NFE2 like bZIP transcription factor 2 (Nrf2), and P38, while also influencing the expression of inflammatory markers such as protein tyrosine phosphatase receptor type C (CD45), and connexin (Cx). These findings revealed the potential protective mechanisms of CA in alleviating oxidative stress and inflammatory damage induced by LPS in poultry. Carnosic acid notably enhanced the chickens' antioxidative capacity by modulating the expression of key proteins, thereby reducing oxidative stress and inflammatory response levels. This study provides a deeper comprehension of the protective mechanisms of CA and its potential impact on avian health.


Subject(s)
Abietanes , Lipopolysaccharides , Poultry , Animals , Lipopolysaccharides/toxicity , Chickens , Liver , Inflammation/chemically induced , Inflammation/veterinary , Antioxidants , Body Weight , Chaperonin 60 , HSP70 Heat-Shock Proteins
14.
FEBS J ; 291(7): 1575-1592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38243371

ABSTRACT

Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality. Ferroptosis, a newly discovered form of oxidative cell death, is involved in the pathogenesis of renal I/R injury; however, the underlying mechanism remains to be explored. Here, we reported that site 1 protease (S1P) promotes ischemic kidney injury by regulating ferroptotic cell death of tubular epithelial cells. S1P abundance was measured in hypoxia/reoxygenation (H/R)-treated Boston University mouse proximal tubular (BUMPT) cells and I/R-induced murine kidney tissue. S1P expression in BUMPT cells and kidneys was initially activated by hypoxic stimulation, accompanied by the ferroptotic response. Blocking S1P blunted H/R-induced ferroptotic cell death, which also restored sirtuin 3 (SIRT3) expression and superoxide dismutase 2 (SOD2) activity in BUMPT cells. Next, inhibition of S1P expression restored I/R-suppressed SIRT3 abundance, SOD2 activity and reduced the elevated level of mitochondria reactive oxygen species (mtROS), which attenuated tubular cell ferroptosis and renal I/R injury. In conclusion, S1P promoted renal tubular epithelial cell ferroptosis under I/R status by activating SIRT3-SOD2-mtROS signaling, thereby accelerating kidney injury. Thus, targeting S1P signaling may serve as a promising strategy for I/R kidney injury.


Subject(s)
Acute Kidney Injury , Ferroptosis , Reperfusion Injury , Serine Endopeptidases , Sirtuin 3 , Superoxide Dismutase , Animals , Mice , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Epithelial Cells/metabolism , Ferroptosis/genetics , Kidney/metabolism , Peptide Hydrolases/metabolism , Reperfusion Injury/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Serine Endopeptidases/metabolism , Proprotein Convertases/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
15.
J Transl Med ; 22(1): 26, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38183100

ABSTRACT

BACKGROUND: (Pro)renin receptor (PRR) is highly expressed in renal tubules, which is involved in physiological and pathological processes. However, the role of PRR, expressed in renal tubular epithelial cells, in diabetic kidney disease (DKD) remain largely unknown. METHODS: In this study, kidney biopsies, urine samples, and public RNA-seq data from DKD patients were used to assess PRR expression and cell pyroptosis in tubular epithelial cells. The regulation of tubular epithelial cell pyroptosis by PRR was investigated by in situ renal injection of adeno-associated virus9 (AAV9)-shRNA into db/db mice, and knockdown or overexpression of PRR in HK-2 cells. To reveal the underlined mechanism, the interaction of PRR with potential binding proteins was explored by using BioGrid database. Furthermore, the direct binding of PRR to dipeptidyl peptidase 4 (DPP4), a pleiotropic serine peptidase which increases blood glucose by degrading incretins under diabetic conditions, was confirmed by co-immunoprecipitation assay and immunostaining. RESULTS: Higher expression of PRR was found in renal tubules and positively correlated with kidney injuries of DKD patients, in parallel with tubular epithelial cells pyroptosis. Knockdown of PRR in kidneys significantly blunted db/db mice to kidney injury by alleviating renal tubular epithelial cells pyroptosis and the resultant interstitial inflammation. Moreover, silencing of PRR blocked high glucose-induced HK-2 pyroptosis, whereas overexpression of PRR enhanced pyroptotic cell death of HK-2 cells. Mechanistically, PRR selectively bound to cysteine-enrich region of C-terminal of DPP4 and augmented the protein abundance of DPP4, leading to the downstream activation of JNK signaling and suppression of SIRT3 signaling and FGFR1 signaling, and then subsequently mediated pyroptotic cell death. CONCLUSIONS: This study identified the significant role of PRR in the pathogenesis of DKD; specifically, PRR promoted tubular epithelial cell pyroptosis via DPP4 mediated signaling, highlighting that PRR could be a promising therapeutic target in DKD.


Subject(s)
Diabetic Nephropathies , Prorenin Receptor , Animals , Humans , Mice , Diabetes Mellitus , Diabetic Nephropathies/metabolism , Dipeptidyl Peptidase 4 , Epithelial Cells , MAP Kinase Signaling System , Prorenin Receptor/metabolism , Pyroptosis
16.
Nucleic Acids Res ; 52(D1): D502-D512, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37811892

ABSTRACT

The Novel Metagenome Protein Families Database (NMPFamsDB) is a database of metagenome- and metatranscriptome-derived protein families, whose members have no hits to proteins of reference genomes or Pfam domains. Each protein family is accompanied by multiple sequence alignments, Hidden Markov Models, taxonomic information, ecosystem and geolocation metadata, sequence and structure predictions, as well as 3D structure models predicted with AlphaFold2. In its current version, NMPFamsDB hosts over 100 000 protein families, each with at least 100 members. The reported protein families significantly expand (more than double) the number of known protein sequence clusters from reference genomes and reveal new insights into their habitat distribution, origins, functions and taxonomy. We expect NMPFamsDB to be a valuable resource for microbial proteome-wide analyses and for further discovery and characterization of novel functions. NMPFamsDB is publicly available in http://www.nmpfamsdb.org/ or https://bib.fleming.gr/NMPFamsDB.


Subject(s)
Databases, Protein , Metagenome , Proteins , Amino Acid Sequence , Databases, Factual , Ecosystem , Proteins/chemistry , Geography
17.
Article in English | MEDLINE | ID: mdl-38049206

ABSTRACT

The need to simplify fabrication processes and reduce costs for high-performance humidity sensors is increasingly vital, especially in fields such as healthcare and agriculture. This study introduces a simple and cost-effective approach using laser-induced graphene (LIG) on a polyimide film to create highly sensitive and fast-response flexible humidity sensors. The LIG acts as the electrode, while the porous polyimide between the interdigital LIG electrodes serves as the humidity sensing material, showing changes in electrical conductivity based on the humidity levels. The LIG humidity sensor, an ionic-conduction type, exhibits remarkable sensitivity, with a 28,231-fold increase in current as relative humidity changes from 26.1 to 90.2%. It also boasts of ultrashort response/recovery times (less than 0.5/7 s), providing significant advantages in detecting rapid and subtle humidity variations compared to a commercially available MEMS humidity sensor. We successfully demonstrated the LIG humidity sensor's capabilities in ultrafast breathing monitoring (≈174 times per minute), moisture detection of grains, and detection of sudden water pipe leakage. Due to its straightforward and cost-effective fabrication process, the LIG humidity sensor holds immense practical value for affordable, widespread use across various applications.

18.
J Nanobiotechnology ; 21(1): 466, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049845

ABSTRACT

Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Oxidative Stress , Animals , Humans , Rats , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mesenchymal Stem Cells/metabolism , NF-E2-Related Factor 2/metabolism , Osteogenesis , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
19.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139429

ABSTRACT

Diabetes nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide, and podocyte injury is the central contributor to the progression of DN. Despite the emerging evidence that has established the importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of DN, abnormal protein O-GlcNAcylation is also augmented. Currently, the mechanism associating these two hyperglycemia-induced disorders remains poorly understood. This study intended to elucidate whether ER stress drives hyper-protein O-GlcNAcylation to cause podocyte injury in DN. We used both type 1 and type 2 DN models to confirm the occurrence of ER stress and excessive protein O-GlcNAcylation, and then podocyte purification was also conducted for further investigation. Nephroseq V5 data were mined and in vitro studies were applied to reveal the involvement of ER stress and hyper-O-GlcNAcylation in podocyte injury. Our results indicated that ER stress was induced in both type 1 and type 2 DN, and the human RNA-seq data from Nephroseq V5 showed that O-GlcNAcylation-related genes were significantly upregulated in the DN patients. We further demonstrated that ER stress occurred prior to hyper-O-GlcNAc modification and that pharmacologically inhibited protein O-GlcNAcylation can help decrease the podocyte apoptosis induced by hyperglycemia. Together, these discoveries will aid in uncovering the activation of the ER stress-O-GlcNAcylation axis in podocyte injury under DN, which will help open up new therapeutic approaches for preventing DN progression.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Hyperglycemia , Podocytes , Humans , Podocytes/metabolism , Diabetic Nephropathies/metabolism , Endoplasmic Reticulum Stress/genetics , Proteins/metabolism , Hyperglycemia/metabolism , Diabetes Mellitus, Type 2/metabolism
20.
J Chem Theory Comput ; 19(22): 8460-8471, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37947474

ABSTRACT

Data-driven predictive methods that can efficiently and accurately transform protein sequences into biologically active structures are highly valuable for scientific research and medical development. Determining an accurate folding landscape using coevolutionary information is fundamental to the success of modern protein structure prediction methods. As the state of the art, AlphaFold2 has dramatically raised the accuracy without performing explicit coevolutionary analysis. Nevertheless, its performance still shows strong dependence on available sequence homologues. Based on the interrogation on the cause of such dependence, we presented EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets. By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in the low-data regime and even achieve encouraging performance with single-sequence predictions. Being able to make accurate predictions with few-shot MSA not only generalizes AlphaFold2 better for orphan sequences but also democratizes its use for high-throughput applications. Besides, EvoGen combined with AlphaFold2 yields a probabilistic structure generation method that could explore alternative conformations of protein sequences, and the task-aware differentiable algorithm for sequence generation will benefit other related tasks including protein design.


Subject(s)
Algorithms , Amino Acid Sequence , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL