Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Surg ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833338

ABSTRACT

BACKGROUND: The demand for telesurgery is rapidly increasing. Augmented reality (AR) remote surgery is a promising alternative, fulfilling a worldwide need in fracture surgery. However, previous AR endoscopic and Google Glass remotes remain unsuitable for fracture surgery, and the application of remote fracture surgery has not been reported. We aimed to evaluated the safety and clinical effectiveness of a new AR remote in fracture surgery. MATERIALS AND METHODS: This retrospective non-inferiority cohort study was conducted at three centres. Between January 1, 2018, and March 31, 2022, 800 patients who underwent fracture surgery were eligible for participation. The study enrolled 551 patients with fractures (132 patellae, 128 elbows, 126 tibial plateaus, and 165 ankles) divided into an AR group (specialists used AR to remotely guide junior doctors to perform surgeries) and a traditional non-remote group (specialists performed the surgery themselves). RESULTS: Among 364 patients (182 per group) matched by propensity score, seven (3.8%) in the AR group and four (3%) in the non-remote group developed complications. The 0.005 risk difference (95% confidence interval: -0.033 to 0.044) was below the pre-defined non-inferiority margin of a 10% absolute increase. A similar distribution in the individual components of all complications was found between the groups. Hierarchical analysis following propensity score matching revealed no statistical difference between the two groups regarding functional results at 1-year follow-up, operative time, amount of bleeding, number of fluoroscopies, and injury surgery interval. A Likert scale questionnaire showed positive results (median scores: 4-5) for safety, efficiency, and education. CONCLUSION: This study is the first to report that AR remote surgery can be as safe and effective as that performed by a specialist in person for fracture surgery, even without the physical presence of a specialist, and is associated with improving the skills and increasing the confidence of junior surgeons. This technique is promising for remote fracture surgery and other open surgeries, offering a new strategy to address inadequate medical care in remote areas.

2.
Front Med (Lausanne) ; 10: 1224489, 2023.
Article in English | MEDLINE | ID: mdl-37663656

ABSTRACT

Objectives: To explore an intelligent detection technology based on deep learning algorithms to assist the clinical diagnosis of distal radius fractures (DRFs), and further compare it with human performance to verify the feasibility of this method. Methods: A total of 3,240 patients (fracture: n = 1,620, normal: n = 1,620) were included in this study, with a total of 3,276 wrist joint anteroposterior (AP) X-ray films (1,639 fractured, 1,637 normal) and 3,260 wrist joint lateral X-ray films (1,623 fractured, 1,637 normal). We divided the patients into training set, validation set and test set in a ratio of 7:1.5:1.5. The deep learning models were developed using the data from the training and validation sets, and then their effectiveness were evaluated using the data from the test set. Evaluate the diagnostic performance of deep learning models using receiver operating characteristic (ROC) curves and area under the curve (AUC), accuracy, sensitivity, and specificity, and compare them with medical professionals. Results: The deep learning ensemble model had excellent accuracy (97.03%), sensitivity (95.70%), and specificity (98.37%) in detecting DRFs. Among them, the accuracy of the AP view was 97.75%, the sensitivity 97.13%, and the specificity 98.37%; the accuracy of the lateral view was 96.32%, the sensitivity 94.26%, and the specificity 98.37%. When the wrist joint is counted, the accuracy was 97.55%, the sensitivity 98.36%, and the specificity 96.73%. In terms of these variables, the performance of the ensemble model is superior to that of both the orthopedic attending physician group and the radiology attending physician group. Conclusion: This deep learning ensemble model has excellent performance in detecting DRFs on plain X-ray films. Using this artificial intelligence model as a second expert to assist clinical diagnosis is expected to improve the accuracy of diagnosing DRFs and enhance clinical work efficiency.

3.
Front Bioeng Biotechnol ; 11: 1194009, 2023.
Article in English | MEDLINE | ID: mdl-37539438

ABSTRACT

Objective: Explore a new deep learning (DL) object detection algorithm for clinical auxiliary diagnosis of lumbar spondylolisthesis and compare it with doctors' evaluation to verify the effectiveness and feasibility of the DL algorithm in the diagnosis of lumbar spondylolisthesis. Methods: Lumbar lateral radiographs of 1,596 patients with lumbar spondylolisthesis from three medical institutions were collected, and senior orthopedic surgeons and radiologists jointly diagnosed and marked them to establish a database. These radiographs were randomly divided into a training set (n = 1,117), a validation set (n = 240), and a test set (n = 239) in a ratio of 0.7 : 0.15: 0.15. We trained two DL models for automatic detection of spondylolisthesis and evaluated their diagnostic performance by PR curves, areas under the curve, precision, recall, F1-score. Then we chose the model with better performance and compared its results with professionals' evaluation. Results: A total of 1,780 annotations were marked for training (1,242), validation (263), and test (275). The Faster Region-based Convolutional Neural Network (R-CNN) showed better precision (0.935), recall (0.935), and F1-score (0.935) in the detection of spondylolisthesis, which outperformed the doctor group with precision (0.927), recall (0.892), f1-score (0.910). In addition, with the assistance of the DL model, the precision of the doctor group increased by 4.8%, the recall by 8.2%, the F1-score by 6.4%, and the average diagnosis time per plain X-ray was shortened by 7.139 s. Conclusion: The DL detection algorithm is an effective method for clinical diagnosis of lumbar spondylolisthesis. It can be used as an assistant expert to improve the accuracy of lumbar spondylolisthesis diagnosis and reduce the clinical workloads.

4.
Sci Rep ; 13(1): 3714, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36878941

ABSTRACT

We explored a new artificial intelligence-assisted method to assist junior ultrasonographers in improving the diagnostic performance of uterine fibroids and further compared it with senior ultrasonographers to confirm the effectiveness and feasibility of the artificial intelligence method. In this retrospective study, we collected a total of 3870 ultrasound images from 667 patients with a mean age of 42.45 years ± 6.23 [SD] for those who received a pathologically confirmed diagnosis of uterine fibroids and 570 women with a mean age of 39.24 years ± 5.32 [SD] without uterine lesions from Shunde Hospital of Southern Medical University between 2015 and 2020. The DCNN model was trained and developed on the training dataset (2706 images) and internal validation dataset (676 images). To evaluate the performance of the model on the external validation dataset (488 images), we assessed the diagnostic performance of the DCNN with ultrasonographers possessing different levels of seniority. The DCNN model aided the junior ultrasonographers (Averaged) in diagnosing uterine fibroids with higher accuracy (94.72% vs. 86.63%, P < 0.001), sensitivity (92.82% vs. 83.21%, P = 0.001), specificity (97.05% vs. 90.80%, P = 0.009), positive predictive value (97.45% vs. 91.68%, P = 0.007), and negative predictive value (91.73% vs. 81.61%, P = 0.001) than they achieved alone. Their ability was comparable to that of senior ultrasonographers (Averaged) in terms of accuracy (94.72% vs. 95.24%, P = 0.66), sensitivity (92.82% vs. 93.66%, P = 0.73), specificity (97.05% vs. 97.16%, P = 0.79), positive predictive value (97.45% vs. 97.57%, P = 0.77), and negative predictive value (91.73% vs. 92.63%, P = 0.75). The DCNN-assisted strategy can considerably improve the uterine fibroid diagnosis performance of junior ultrasonographers to make them more comparable to senior ultrasonographers.


Subject(s)
Artificial Intelligence , Leiomyoma , Humans , Female , Adult , Retrospective Studies , Ultrasonography , Allied Health Personnel , Hydrolases , Leiomyoma/diagnostic imaging
5.
Front Oncol ; 13: 1125637, 2023.
Article in English | MEDLINE | ID: mdl-36845701

ABSTRACT

Purpose: To develop and assess a deep convolutional neural network (DCNN) model for the automatic detection of bone metastases from lung cancer on computed tomography (CT). Methods: In this retrospective study, CT scans acquired from a single institution from June 2012 to May 2022 were included. In total, 126 patients were assigned to a training cohort (n = 76), a validation cohort (n = 12), and a testing cohort (n = 38). We trained and developed a DCNN model based on positive scans with bone metastases and negative scans without bone metastases to detect and segment the bone metastases of lung cancer on CT. We evaluated the clinical efficacy of the DCNN model in an observer study with five board-certified radiologists and three junior radiologists. The receiver operator characteristic curve was used to assess the sensitivity and false positives of the detection performance; the intersection-over-union and dice coefficient were used to evaluate the segmentation performance of predicted lung cancer bone metastases. Results: The DCNN model achieved a detection sensitivity of 0.894, with 5.24 average false positives per case, and a segmentation dice coefficient of 0.856 in the testing cohort. Through the radiologists-DCNN model collaboration, the detection accuracy of the three junior radiologists improved from 0.617 to 0.879 and the sensitivity from 0.680 to 0.902. Furthermore, the mean interpretation time per case of the junior radiologists was reduced by 228 s (p = 0.045). Conclusions: The proposed DCNN model for automatic lung cancer bone metastases detection can improve diagnostic efficiency and reduce the diagnosis time and workload of junior radiologists.

6.
Front Bioeng Biotechnol ; 10: 740507, 2022.
Article in English | MEDLINE | ID: mdl-35273954

ABSTRACT

Objective: The aim of this study is to explore the potential of mixed reality (MR) technology in the visualization of orthopedic surgery. Methods: The visualization system with MR technology is widely used in orthopedic surgery. The system is composed of a 3D imaging workstation, a cloud platform, and an MR space station. An intelligent segmentation algorithm is adopted on the 3D imaging workstation to create a 3D anatomical model with zooming and rotation effects. This model is then exploited for efficient 3D reconstruction of data for computerized tomography (CT) and magnetic resonance imaging (MRI). Additionally, the model can be uploaded to the cloud platform for physical parameter tuning, model positioning, rendering and high-dimensional display. Using Microsoft's HoloLens glasses in combination with the MR system, we project and view 3D holograms in real time under different clinical scenarios. After each procedure, nine surgeons completed a Likert-scale questionnaire on communication and understanding, spatial awareness and effectiveness of MR technology use. In addition to that, the National Aeronautics and Space Administration Task Load Index (NASA-TLX) is also used to evaluate the workload of MR hologram support. Results: 1) MR holograms can clearly show the 3D structures of bone fractures, which improves the understanding of different fracture types and the design of treatment plans; 2) Holograms with three-dimensional lifelike dynamic features provide an intuitive communication tool among doctors and also between doctors and patients; 3) During surgeries, a full lesion hologram can be obtained and blended in real time with a patient's virtual 3D digital model in order to give surgeons superior visual guidance through novel high-dimensional "perspectives" of the surgical area; 4) Hologram-based magnetic navigation improves the accuracy and safety of the screw placement in orthopaedics surgeries; 5) The combination of mixed reality cloud platform and telemedicine system based on 5G provides a new technology platform for telesurgery collaboration. Results of qualitative study encourage the usage of MR technology for orthopaedics surgery. Analysis of the Likert-scale questionnaire shows that MR adds significant value to understanding and communication, spatial awareness, learning and effectiveness. Based on the NASA TLX-scale questionnaire results, mixed reality scored significantly lower under the "mental," "temporal," "performance," and "frustration" categories compared to usual 2D. Conclusion: The integration of MR technology in orthopaedic surgery reduces the dependence on surgeons' experience and provides personalized 3D visualization models for accurate diagnosis and treatment of orthopaedic abnormalities. This integration is clearly one of the prominent future development directions in medical surgery.

7.
Curr Med Sci ; 41(6): 1116-1122, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34881423

ABSTRACT

As modern science and technology constantly progresses, the fields of artificial intelligence, mixed reality technology, remote technology, etc. have rapidly developed. Meanwhile, these technologies have been gradually applied to the medical field, leading to the development of intelligent medicine. What's more, intelligent medicine has greatly promoted the development of traditional Chinese medicine (TCM), causing huge changes in the diagnosis of TCM ailments, remote treatment, teaching, etc. Therefore, there are both opportunities and challenges for inheriting and developing TCM. Herein, the related research progress of intelligent medicine in the TCM in China and abroad over the years is analyzed, with the purpose of introducing the present application status of intelligent medicine in TCM and providing reference for the inheritance and development of TCM in a new era.


Subject(s)
Artificial Intelligence , Medicine, Chinese Traditional/trends , China , Humans , Machine Learning
8.
Curr Med Sci ; 41(6): 1105-1115, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34874486

ABSTRACT

Artificial intelligence (AI) is a new technical discipline that uses computer technology to research and develop the theory, method, technique, and application system for the simulation, extension, and expansion of human intelligence. With the assistance of new AI technology, the traditional medical environment has changed a lot. For example, a patient's diagnosis based on radiological, pathological, endoscopic, ultrasonographic, and biochemical examinations has been effectively promoted with a higher accuracy and a lower human workload. The medical treatments during the perioperative period, including the preoperative preparation, surgical period, and postoperative recovery period, have been significantly enhanced with better surgical effects. In addition, AI technology has also played a crucial role in medical drug production, medical management, and medical education, taking them into a new direction. The purpose of this review is to introduce the application of AI in medicine and to provide an outlook of future trends.


Subject(s)
Artificial Intelligence , Medicine , Computer Simulation , Humans , Technology
9.
Curr Med Sci ; 41(6): 1158-1164, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34971441

ABSTRACT

OBJECTIVE: To explore a new artificial intelligence (AI)-aided method to assist the clinical diagnosis of tibial plateau fractures (TPFs) and further measure its validity and feasibility. METHODS: A total of 542 X-rays of TPFs were collected as a reference database. An AI algorithm (RetinaNet) was trained to analyze and detect TPF on the X-rays. The ability of the AI algorithm was determined by indexes such as detection accuracy and time taken for analysis. The algorithm performance was also compared with orthopedic physicians. RESULTS: The AI algorithm showed a detection accuracy of 0.91 for the identification of TPF, which was similar to the performance of orthopedic physicians (0.92±0.03). The average time spent for analysis of the AI was 0.56 s, which was 16 times faster than human performance (8.44±3.26 s). CONCLUSION: The AI algorithm is a valid and efficient method for the clinical diagnosis of TPF. It can be a useful assistant for orthopedic physicians, which largely promotes clinical workflow and further guarantees the health and security of patients.


Subject(s)
Algorithms , Artificial Intelligence/statistics & numerical data , Orthopedics , Physicians , Tibial Fractures/diagnosis , Adult , Feasibility Studies , Female , Humans , Male , X-Rays
10.
J Med Internet Res ; 23(10): e28613, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34533470

ABSTRACT

BACKGROUND: As a distributed technology, blockchain has attracted increasing attention from stakeholders in the medical industry. Although previous studies have analyzed blockchain applications from the perspectives of technology, business, or patient care, few studies have focused on actual use-case scenarios of blockchain in health care. In particular, the outbreak of COVID-19 has led to some new ideas for the application of blockchain in medical practice. OBJECTIVE: This paper aims to provide a systematic review of the current and projected uses of blockchain technology in health care, as well as directions for future research. In addition to the framework structure of blockchain and application scenarios, its integration with other emerging technologies in health care is discussed. METHODS: We searched databases such as PubMed, EMBASE, Scopus, IEEE, and Springer using a combination of terms related to blockchain and health care. Potentially relevant papers were then compared to determine their relevance and reviewed independently for inclusion. Through a literature review, we summarize the key medical scenarios using blockchain technology. RESULTS: We found a total of 1647 relevant studies, 60 of which were unique studies that were included in this review. These studies report a variety of uses for blockchain and their emphasis differs. According to the different technical characteristics and application scenarios of blockchain, we summarize some medical scenarios closely related to blockchain from the perspective of technical classification. Moreover, potential challenges are mentioned, including the confidentiality of privacy, the efficiency of the system, security issues, and regulatory policy. CONCLUSIONS: Blockchain technology can improve health care services in a decentralized, tamper-proof, transparent, and secure manner. With the development of this technology and its integration with other emerging technologies, blockchain has the potential to offer long-term benefits. Not only can it be a mechanism to secure electronic health records, but blockchain also provides a powerful tool that can empower users to control their own health data, enabling a foolproof health data history and establishing medical responsibility.


Subject(s)
Blockchain , COVID-19 , Confidentiality , Data Management , Electronic Health Records , Humans , SARS-CoV-2
11.
Intell Med ; 1(1): 16-18, 2021 May.
Article in English | MEDLINE | ID: mdl-34447601

ABSTRACT

Coronavirus disease 2019 (COVID-19) made a huge effect globally. With the assistance of mixed reality (MR) technology, complicated clinical works became easier to carry out and the condition had been greatly improved with high-tech advantages such as improved convenience, better understanding and communication, higher security, and medical resource saving. This study aimed to introduce one kind of MR application in the fight against COVID-19 and anticipate more feasible smart healthcare applications to enhance our strength for the final victory.

12.
J Med Internet Res ; 23(9): e24081, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34061760

ABSTRACT

BACKGROUND: The COVID-19 outbreak has now become a pandemic and has had a serious adverse impact on global public health. The effect of COVID-19 on the lungs can be determined through 2D computed tomography (CT) imaging, which requires a high level of spatial imagination on the part of the medical provider. OBJECTIVE: The purpose of this study is to determine whether viewing a 3D hologram with mixed reality techniques can improve medical professionals' understanding of the pulmonary lesions caused by COVID-19. METHODS: The study involved 60 participants, including 20 radiologists, 20 surgeons, and 20 medical students. Each of the three groups was randomly divided into two groups, either the 2D CT group (n=30; mean age 29 years [range 19-38 years]; males=20) or the 3D holographic group (n=30; mean age 30 years [range 20=38 years]; males=20). The two groups completed the same task, which involved identifying lung lesions caused by COVID-19 for 6 cases using a 2D CT or 3D hologram. Finally, an independent radiology professor rated the participants' performance (out of 100). All participants in two groups completed a Likert scale questionnaire regarding the educational utility and efficiency of 3D holograms. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed by all participants. RESULTS: The mean task score of the 3D hologram group (mean 91.98, SD 2.45) was significantly higher than that of the 2D CT group (mean 74.09, SD 7.59; P<.001). With the help of 3D holograms, surgeons and medical students achieved the same score as radiologists and made obvious progress in identifying pulmonary lesions caused by COVID-19. The Likert scale questionnaire results showed that the 3D hologram group had superior results compared to the 2D CT group (teaching: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; understanding and communicating: 2D CT group median 1, IQR 1-1 versus 3D group median 5, IQR 5-5; P<.001; increasing interest: 2D CT group median 2, IQR 2-2 versus 3D group median 5, IQR 5-5; P<.001; lowering the learning curve: 2D CT group median 2, IQR 1-2 versus 3D group median 4, IQR 4-5; P<.001; spatial awareness: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; learning: 2D CT group median 3, IQR 2-3 versus 3D group median 5, IQR 5-5; P<.001). The 3D group scored significantly lower than the 2D CT group for the "mental," "temporal," "performance," and "frustration" subscales on the NASA-TLX. CONCLUSIONS: A 3D hologram with mixed reality techniques can be used to help medical professionals, especially medical students and newly hired doctors, better identify pulmonary lesions caused by COVID-19. It can be used in medical education to improve spatial awareness, increase interest, improve understandability, and lower the learning curve. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100045845; http://www.chictr.org.cn/showprojen.aspx?proj=125761.


Subject(s)
Augmented Reality , COVID-19 , Students, Medical , Adult , Humans , Lung , Male , SARS-CoV-2 , United States , Young Adult
13.
Front Cell Dev Biol ; 9: 770510, 2021.
Article in English | MEDLINE | ID: mdl-35141231

ABSTRACT

Intervertebral disc degeneration (IVDD) has been reported to be the most prevalent contributor to low back pain, posing a significant strain on the healthcare systems on a global scale. Currently, there are no approved therapies available for the prevention of the progressive degeneration of intervertebral disc (IVD); however, emerging regenerative strategies that aim to restore the normal structure of the disc have been fundamentally promising. In the last decade, mesenchymal stem cells (MSCs) have received a significant deal of interest for the treatment of IVDD due to their differentiation potential, immunoregulatory capabilities, and capability to be cultured and regulated in a favorable environment. Recent investigations show that the pleiotropic impacts of MSCs are regulated by the production of soluble paracrine factors. Exosomes play an important role in regulating such effects. In this review, we have summarized the current treatments for disc degenerative diseases and their limitations and highlighted the therapeutic role and its underlying mechanism of MSC-derived exosomes in IVDD, as well as the possible future developments for exosomes.

15.
J Bone Joint Surg Am ; 102(17): 1542-1550, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32358411

ABSTRACT

BACKGROUND: The Pfannenstiel approach, which provides good surgical exposure, has been used for the treatment of pubic symphysis diastasis and parasymphyseal fractures. However, it requires a medium-length incision and moderate soft-tissue dissection, resulting in potential damage to anatomical structures and inferior aesthetic outcomes. Here, we introduce a new concealed-incision extrapelvic approach for the internal fixation of pubic symphysis diastasis and parasymphyseal fractures. METHODS: We retrospectively reviewed the records of 8 patients with pubic symphysis diastasis and parasymphyseal fractures that had been treated via the concealed-incision extrapelvic approach (the "Fu-Liu" approach). All patients presented for treatment during the period from January 2017 to November 2017. Six of the 8 patients had anterior column fractures, 1 patient had a double-column fracture, and 1 patient had parasymphyseal fractures. Operative time, the amount of blood loss, and postoperative radiographic and computed tomography (CT) findings were recorded. The degree of fracture-healing, complications, function, and satisfaction with the skin incisions were also evaluated. RESULTS: All patients were followed for at least 21 months (range, 21 to 30 months). Postoperative radiographs and CT scans showed good positioning of plates and screws. The average time before surgery, operative time, and intraoperative blood loss (and standard deviation) were 7.8 ± 3.25 days, 41.9 ± 8.99 minutes, and 18.8 ± 7.8 mL, respectively. No complications (including internal fixation failure, vascular injury, nerve palsy, wound infection, and hernia) occurred in any of the patients, and all patients were satisfied with the appearance of the scar. CONCLUSIONS: We can effectively stabilize pubic symphysis diastasis and parasymphyseal fractures with use of the Fu-Liu approach, which can also enable retrograde anterior column screw placement. The Fu-Liu approach is simple, safe, and minimally invasive, and the aesthetic outcome is more acceptable than that associated with the Pfannenstiel approach. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Fracture Fixation, Internal/methods , Fractures, Bone/surgery , Pubic Bone/injuries , Pubic Bone/surgery , Pubic Symphysis Diastasis/surgery , Adult , Female , Fractures, Bone/complications , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...