Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Clin Pharmacol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171895

ABSTRACT

Loratadine is metabolized to desloratadine. Both of them have been used for allergy treatment in children. Anatomical, physiological, and biological parameters of children and clearance of drugs vary with age. We aimed to develop a whole-body physiologically based pharmacokinetic (PBPK) model to simultaneously predict the pharmacokinetics of loratadine and desloratadine in children. Following validation using 11 adult data sets, the developed PBPK model was extrapolated to children. Plasma concentrations following oral loratadine or desloratadine to children of different ages were simulated and compared with six children data sets. After scaling anatomy/physiology, protein binding, and clearance, pharmacokinetics of the two drugs in pediatric populations were satisfactorily predicted. Most of the observed concentrations fell within the 5th-95th percentile range of the simulations in 1000 virtual children. The predicted area under the concentration-time curve (AUC) and Cmax fell within 0.5-2.0-fold range of the observations. Oral doses of loratadine or desloratadine for children of different ages were simulated based on similar AUCs following 10 mg of loratadine or 5 mg of desloratadine for adults. Pediatric PBPK model was successfully developed to simultaneously predict plasma concentrations of loratadine and desloratadine in children of all ages. The developed pediatric PBPK model may also be applied to optimize pediatric dosage.

2.
Acta Pharmacol Sin ; 45(8): 1752-1764, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38570601

ABSTRACT

Morphine and morphine-6-glucuronide (M6G) produce central nervous system (CNS) effects by activating mu-opioid receptors, while naloxone is used mainly for the reversal of opioid overdose, specifically for the fatal complication of respiratory depression, but also for alleviating opioid-induced side effects. In this study we developed a physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) model to simultaneously predict pharmacokinetics and CNS effects (miosis, respiratory depression and analgesia) of morphine as well as antagonistic effects of naloxone against morphine. The pharmacokinetic and pharmacodynamic parameters were obtained from in vitro data, in silico, or animals. Pharmacokinetic and pharmacodynamic simulations were conducted using 39 and 36 clinical reports, respectively. The pharmacokinetics of morphine and M6G following oral or intravenous administration were simulated, and the PBPK-PD model was validated using clinical observations. The Emax model correlated CNS effects with free concentrations of morphine and M6G in brain parenchyma. The predicted CNS effects were compared with observations. Most clinical observations fell within the 5th-95th percentiles of simulations based on 1000 virtual individuals. Most of the simulated area under the concentration-time curve or peak concentrations also fell within 0.5-2-fold of observations. The contribution of morphine to CNS effects following intravenous or oral administration was larger than that of M6G. Pharmacokinetics and antagonistic effects of naloxone on CNS effects were also successfully predicted using the developed PBPK-PD model. In conclusion, the pharmacokinetics and pharmacodynamics of morphine and M6G, antagonistic effects of naloxone against morphine-induced CNS effects may be successfully predicted using the developed PBPK-PD model based on the parameters derived from in vitro, in silico, or animal studies.


Subject(s)
Models, Biological , Morphine , Naloxone , Narcotic Antagonists , Naloxone/pharmacokinetics , Naloxone/pharmacology , Humans , Morphine/pharmacokinetics , Morphine/administration & dosage , Morphine/pharmacology , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/pharmacology , Narcotic Antagonists/administration & dosage , Animals , Morphine Derivatives/pharmacokinetics , Central Nervous System/drug effects , Central Nervous System/metabolism , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/administration & dosage , Male , Computer Simulation , Administration, Oral , Adult , Administration, Intravenous , Female
3.
Polymers (Basel) ; 15(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139879

ABSTRACT

In this study, a progressive damage model was developed for the mechanical response and damage evolution of carbon fiber stitched composite laminates under low-velocity impact (LVI). The three-dimensional Hashin and Hou failure criteria were used to identify fiber and matrix damage. The cohesive zone model was adopted to simulate the delamination damage, combined with the linear degradation discounting of the equivalent displacement method to characterize the stiffness degradation of the material, and the corresponding user material subroutine VUMAT was coded. The finite element analysis of the LVI of stitched composite laminates under different energies was finished in Abaqus/Explicit. Furthermore, the simulation predictions matched well with the results of the experimental tests. Based on this, composite laminates' mechanical response and damage forms with different thicknesses and stitch densities were analyzed. The findings show that the main damages of composite laminates were matrix tensile damage and delamination. The stitching process could improve the impact tolerance of composite laminates, inhibiting delamination and reducing the area of the delamination damage. The higher the density of the stitching, the more noticeable its inhibition would be. The thickness of the laminate also had a more significant effect on the damage to the laminate. Thin plates were more prone to matrix tensile damage due to their lower flexural rigidity, whereas thick plates were more susceptible to delamination because of their higher flexural rigidity.

4.
Exp Ther Med ; 26(5): 513, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37840569

ABSTRACT

Forkhead box D1 (FOXD1) expression is upregulated in various types of human cancer. To the best of our knowledge, the roles of FOXD1 in prostate cancer (PC) remain largely unknown. The Cancer Genome Atlas dataset was used for the bioinformatics analysis of FOXD1 in PC. FOXD1 expression levels in normal immortalized human prostate epithelial cells (RWPE-1) and prostate cancer cells were detected by reverse transcription-quantitative PCR. PC cell viability was detected using Cell Counting Kit-8 assay. Transwell assays were performed to assess the migration and invasion of PC cells. Luciferase reporter gene assay was used to validate the association between FOXD1 and lamin (LMN)B1. LMNB1 is an important part of the cytoskeleton, which serves an important role in the process of tumor occurrence and development, regulating apoptosis and DNA repair. FOXD1 expression was upregulated in PC tissues, with its high expression being associated with clinical stage and survival in PC. Knockdown of FOXD1 inhibited viability, migration and invasion of PC cells. FOXD1 positively regulated LMNB1 expression. The effect of FOXD1 knockdown on PC cells was reversed by LMNB1 overexpression. In conclusion, FOXD1, positively regulated by LMNB1, served as an oncogene in PC and may be a potential biomarker and treatment target for PC.

5.
Zookeys ; 1178: 279-291, 2023.
Article in English | MEDLINE | ID: mdl-37719337

ABSTRACT

One of the main goals in biogeography and ecology is the study of patterns of species diversity and the driving factors in these patterns. However, such studies have not focused on Sternorrhyncha in China, although this region hosts massive species distribution data. Here, based on the 15,450 distribution records of Sternorrhyncha species in China, we analyzed patterns in species richness and endemism at 1° × 1° grid size and determined the effects of environmental variables on these patterns using correlations analysis and the model averaging approach. We found that species richness and endemism of Sternorrhyncha species are unevenly distributed, with high values in the eastern and southeastern coastal regions of mainland China, as well as Taiwan Island. Furthermore, the key factors driving species richness and endemism patterns are inconsistent. Species richness patterns were strongly affected by the normalized difference vegetation index, which is closely related to the feeding habits of Sternorrhyncha, whereas endemism patterns were strongly affected by the elevation range. Therefore, our results indicate that the range size of species should be considered to understand the determinants of species diversity patterns.

6.
Plant Commun ; 4(2): 100472, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36352792

ABSTRACT

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease that threatens wheat production worldwide. Pm12, which originated from Aegilops speltoides, a wild relative of wheat, confers strong resistance to powdery mildew and therefore has potential use in wheat breeding. Using susceptible mutants induced by gamma irradiation, we physically mapped and isolated Pm12 and showed it to be orthologous to Pm21 from Dasypyrum villosum, also a wild relative of wheat. The resistance function of Pm12 was validated via ethyl methanesulfonate mutagenesis, virus-induced gene silencing, and stable genetic transformation. Evolutionary analysis indicates that the Pm12/Pm21 loci in wheat species are relatively conserved but dynamic. Here, we demonstrated that the two orthologous genes, Pm12 and Pm21, possess differential resistance against the same set of Bgt isolates. Overexpression of the coiled-coil domains of both PM12 and PM21 induces cell death in Nicotiana benthamiana leaves. However, their full-length forms display different cell death-inducing activities caused by their distinct intramolecular interactions. Cloning of Pm12 will facilitate its application in wheat breeding programs. This study also gives new insight into two orthologous resistance genes, Pm12 and Pm21, which show different race specificities and intramolecular interaction patterns.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Genes, Plant , Poaceae/genetics
7.
Medicine (Baltimore) ; 101(43): e31437, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36316840

ABSTRACT

BACKGROUND: Whether metformin is related to nonalcoholic fatty liver disease (NAFLD) is controversial. Our aim was to investigate the relationship between metformin and NAFLD that may predict the metformin potential of these lesions and new prevention strategies in NAFLD patients. METHODS: The meta-analysis was analyzed by Revman 5.3 softwares systematically searched for works published through July 29, 2022. Network pharmacology research based on databases, Cytoscape 3.7.1 software and R software respectively. RESULTS: The following variables were associated with metformin in NAFLD patients: decreased of alanine aminotransferase (ALT) level (mean difference [MD] = -10.84, 95% confidence interval [CI] = -21.85 to 0.16, P = .05); decreased of aspartate amino transferase (AST) level (MD = -4.82, 95% CI = -9.33 to -0.30, P = .04); decreased of triglyceride (TG) level (MD = -0.17, 95% CI = -0.26 to -0.08, P = .0002); decreased of total cholesterol (TC) level (MD = -0.29, 95% CI = -0.47 to -0.10, P = .003); decreased of insulin resistance (IR) level (MD = -0.42, 95% CI = -0.82 to -0.02, P = .04). In addition, body mass index (BMI) (MD = -0.65, 95% CI = -1.46 to 0.16, P = .12) had no association with metformin in NAFLD patients. 181 metformin targets and 868 NAFLD disease targets were interaction analyzed, 15 core targets of metformin for the treatment of NAFLD were obtained. The effect of metformin on NAFLD mainly related to cytoplasm and protein binding, NAFLD, hepatitis B, pathway in cancer, toll like receptor signaling pathway and type 2 diabetes mellitus (T2DM). The proteins of hypoxia inducible factor-1 (HIF1A), nuclear factor erythroid 2-related factor (NFE2L2), nitric oxide synthase 3 (NOS3), nuclear receptor subfamily 3 group C member 1 (NR3C1), PI3K catalytic subunit alpha (PIK3CA), and silencing information regulator 2 related enzyme 1 (SIRT1) may the core targets of metformin for the treatment of NAFLD. CONCLUSION: Metformin might be a candidate drug for the treatment of NAFLD which exhibits therapeutic effect on NAFLD patients associated with ALT, AST, TG, TC and IR while was not correlated with BMI. HIF1A, NFE2L2, NOS3, NR3C1, PIK3CA, and SIRT1 might be core targets of metformin for the treatment of NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Metformin , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Sirtuin 1 , Network Pharmacology , Class I Phosphatidylinositol 3-Kinases
8.
Front Plant Sci ; 13: 988641, 2022.
Article in English | MEDLINE | ID: mdl-36017260

ABSTRACT

Wheat powdery mildew is a devastating disease leading to severe yield loss. The powdery mildew resistance gene Pm21, encoding a nucleotide-binding leucine-rich repeat receptor (NLR) protein, confers broad-spectrum resistance to powdery mildew and has great potential for controlling this disease. In this study, a large-scale mutagenesis was conducted on wheat cultivar (cv.) Yangmai 18 carrying Pm21. As a result, a total of 113 independent mutant lines susceptible to powdery mildew were obtained, among which, only one lost the whole Pm21 locus and the other 112 harbored one- (107) or two-base (5) mutations in the encoding region of Pm21. From the 107 susceptible mutants containing one-base change, we found that 25 resulted in premature stop codons leading to truncated proteins and 82 led to amino acid changes involving in 59 functional sites. We determined the mutations per one hundred amino acids (MPHA) indexes of different domains, motifs, and non-domain and non-motif regions of PM21 protein and found that the loss-of-function mutations occurred in a tendentious means. We also observed a new mutation hotspot that was closely linked to RNBS-D motif of the NB-ARC domain and relatively conserved in different NLRs of wheat crops. In addition, we crossed all the susceptible mutants with Yangmai 18 carrying wild-type Pm21, subsequently phenotyped their F1 plants and revealed that the variant E44K in the coiled-coil (CC) domain could lead to dominant-negative effect. This study revealed key functional sites of PM21 and their distribution characteristics, which would contribute to understanding the relationship of resistance and structure of Pm21-encoded NLR.

9.
PeerJ ; 10: e13591, 2022.
Article in English | MEDLINE | ID: mdl-35762018

ABSTRACT

Background: Safflower (Carthamus tinctorius L.), well known for its flower, is widely used as a dye and traditional Chinese medicine. Flavonoids, especially flavonoid glycosides, are the main pigments and active components. However, their biosynthesis is largely unknown. Interestingly, the colour of flowers in safflower changed from yellow to red during flower development, while much of the gene and chemical bases during colour transition are unclear. Methods: In this research, widely targeted metabolomics and transcriptomics were used to elucidate the changes in flavonoid biosynthesis from the gene and chemical points of view in flowers of safflower during colour transition. The screening of differential metabolites depended on fold change and variable importance in project (VIP) value. Differential expressed genes (DEGs) were screened by DESeq2 method. RT-PCR was used to analyse relative expressions of DEGs. Results: A total of 212 flavonoid metabolites, including hydroxysafflor yellow A, carthamin and anthocyanins, were detected and showed a large difference. The candidate genes of glycosyltransferases and flavonoid hydroxylase that might participate in flavonoid glycoside biosynthesis were screened. Ten candidate genes were screened. Through integrated metabolomics and transcriptome analysis, a uridine diphosphate glucose glycosyltransferase gene, CtUGT9 showed a significant correlation with flavonoid glycosides in safflower. In addition, expression analysis showed that CtUGT9 was mainly expressed in the middle development of flowers and was significantly upregulated under MeJA treatment. Our results indicated that CtUGT9 might play an important role in flavonoid glycoside biosynthesis during colour-transition in safflower.


Subject(s)
Carthamus tinctorius , Carthamus tinctorius/genetics , Anthocyanins/metabolism , Color , Gene Expression Profiling , Metabolomics , Flowers/genetics , Flavonoids , Glycosides/metabolism
10.
Molecules ; 26(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34361635

ABSTRACT

Freesia hybrida is a group of cultivars in the genus Freesia with a strong floral scent composed of diverse volatile organic compounds (VOCs). In this study, the VOCs of 34 F. hybrida were extracted and analyzed by headspace solid phase microextraction and gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 164 VOCs whose relative contents were higher than 0.05% were detected. The numbers of VOCs in all germplasms differed between 11 to 38, and the relative contents ranged from 32.39% to 94.28%, in which most germplasms were higher than 80%. Terpenoids, especially monoterpenes, were the crucial type of VOCs in most germplasms, of which linalool and D-limonene were the most frequently occurring. Principal component analysis (PCA) clearly separated samples based on whether linalool was the main component, and hierarchical clustering analysis (HCA) clustered samples into 4 groups according to the preponderant compounds linalool and (E)-ß-ocimene. Comparison of parental species and hybrids showed heterosis in three hybrids, and the inherited and novel substances suggested that monoterpene played an important role in F. hybrida floral scent. This study established a foundation for the evaluation of Freesia genetic resources, breeding for the floral aroma and promoting commercial application.


Subject(s)
Acyclic Monoterpenes/chemistry , Alkenes/chemistry , Flowers/chemistry , Iridaceae/chemistry , Volatile Organic Compounds/chemistry , Acyclic Monoterpenes/metabolism , Alkenes/metabolism , Flowers/genetics , Flowers/metabolism , Iridaceae/genetics , Iridaceae/metabolism , Plant Breeding , Volatile Organic Compounds/metabolism
11.
Theor Appl Genet ; 134(3): 887-896, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388886

ABSTRACT

KEY MESSAGE: PmSESY, a new wheat powdery mildew resistance gene was characterized and genetically mapped to the terminal region of chromosome 1RL of wild rye Secale sylvestre. The genus Secale is an important resource for wheat improvement. The Secale species are usually considered as non-adapted hosts of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew. However, as a wild species of cultivated rye, S. sylvestre is rarely studied. Here, we reported that 25 S. sylvestre accessions were susceptible to isolate BgtYZ01, whereas the other five confer effective resistance to all the tested isolates of Bgt. A population was then constructed by crossing the resistant accession SESY-01 with the susceptible accession SESY-11. Genetic analysis showed that the resistance in SESY-01 was controlled by a single dominant gene, temporarily designated as PmSESY. Subsequently, combining bulked segregant RNA-Seq (BSR-Seq) analysis with molecular analysis, PmSESY was mapped into a 1.88 cM genetic interval in the terminus of the long arm of 1R, which was closely flanked by markers Xss06 and Xss09 with genetic distances of 0.87 cM and 1.01 cM, respectively. Comparative mapping demonstrated that the corresponding physical region of the PmSESY locus was about 3.81 Mb in rye cv. Lo7 genome, where 30 disease resistance-related genes were annotated, including five NLR-type disease resistance genes, three kinase family protein genes, three leucine-rich repeat receptor-like protein kinase genes and so on. This study gives a new insight into S. sylvestre that shows divergence in response to Bgt and reports a new powdery mildew resistance gene that has potential to be used for resistance improvement in wheat.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/genetics , Secale/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/immunology , Genetic Linkage , Genetic Markers , Plant Diseases/microbiology , Secale/immunology , Secale/microbiology
12.
Theor Appl Genet ; 134(1): 53-62, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32915283

ABSTRACT

KEY MESSAGE: New powdery mildew resistance gene Pm68 was found in the terminal region of chromosome 2BS of Greek durum wheat TRI 1796. The co-segregated molecular markers could be used for MAS. Durum wheat (Triticum turgidum L. var. durum Desf.) is not only an important cereal crop for pasta making, but also a genetic resource for common wheat improvement. In the present study, a Greek durum wheat TRI 1796 was found to confer high resistance to all 22 tested isolates of Blumeria graminis f. sp. tritici (Bgt). Inheritance study on the F1 plants and the F2 population derived from the cross TRI 1796/PI 584832 revealed that the resistance in TRI 1796 was controlled by a single dominant gene, herein designated Pm68. Using the bulked segregant RNA-Seq (BSR-Seq) analysis combined with molecular analysis, Pm68 was mapped to the terminal part of the short arm of chromosome 2B and flanked by markers Xdw04 and Xdw12/Xdw13 with genetic distances of 0.22 cM each. According to the reference genome of durum wheat cv. Svevo, the corresponding physical region spanned the Pm68 locus was about 1.78-Mb, in which a number of disease resistance-related genes were annotated. This study reports the new powdery mildew resistance gene Pm68 that would be a valuable resource for improvement of both common wheat and durum wheat. The co-segregated markers (Xdw05-Xdw11) developed here would be useful tools for marker-assisted selection (MAS) in breeding.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Chromosome Mapping , Chromosomes, Plant , Comparative Genomic Hybridization , Crosses, Genetic , Genes, Dominant , Genes, Plant , Genetic Markers , Greece , Plant Diseases/microbiology , RNA-Seq , Triticum/genetics , Triticum/microbiology
13.
Mol Genet Genomics ; 294(3): 637-647, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30758669

ABSTRACT

Genomes can be considered a combination of 16 dinucleotides. Analysing the relative abundance of different dinucleotides may reveal important features of genome evolution. In present study, we conducted extensive surveys on the relative abundances of dinucleotides in various genomic components of 28 bacterial, 20 archaean, 19 fungal, 24 plant and 29 animal species. We found that TA, GT and AC are significantly under-represented in open reading frames of all organisms and in intergenic regions and introns of most organisms. Specific dinucleotides are of greatly varied usage at different codon positions. The significantly low representations of TA, GT and AC are considered the evolutionary consequences of preventing formation of pre-mature stop codons and of reducing intron-splicing options in candidate primary mRNA sequences. These data suggest that a reduction of TA and GT occurred on both strands of the DNA sequence at an early stage of de novo gene birth. Interestingly, GT and AC are also significantly under-represented in current prokaryotic genomes, suggesting that ancient prokaryotic protein-coding genes might have contained introns. The greatly varied usages of specific dinucleotides at different codon positions are considered evolutionary accommodations to compensate the unavailability of specific codons and to avoid formation of pre-mature stop codons. This is the first report presenting data of dinucleotide relative abundance to indicate the possible existence of spliceosomal introns in ancient prokaryotic genes and to hypothesize early steps of de novo gene birth.


Subject(s)
Archaea/genetics , Base Composition/genetics , Eukaryotic Cells/metabolism , Open Reading Frames/genetics , Prokaryotic Cells/metabolism , Animals , Archaeal Proteins/genetics , Bacterial Proteins/genetics , Base Sequence , Codon/genetics , DNA, Intergenic/genetics , Genome/genetics , Introns/genetics , Species Specificity
14.
Evol Bioinform Online ; 12: 303-312, 2016.
Article in English | MEDLINE | ID: mdl-27980385

ABSTRACT

Since the proposition of introns-early hypothesis, although many studies have shown that most eukaryotic ancestors possessed intron-rich genomes, evidence of intron existence in genomes of ancestral bacteria has still been absent. While not a single intron has been found in all protein-coding genes of current bacteria, analyses on bacterial genes horizontally transferred into eukaryotes at ancient time may provide evidence of intron existence in bacterial ancestors. In this study, a bacterial gene encoding capsule biosynthesis protein CapI was found in the genome of sea anemone, Nematostella vectensis. This horizontally transferred gene contains a phase 1 intron of 40 base pairs. The nucleotides of this intron have high sequence identity with those encoding amino acids in current bacterial CapI gene, indicating that the intron and the amino acid-coding nucleotides are originated from the same ancestor sequence. Moreover, 5'-splice site of this intron is located in a GT-poor region associated with a closely following AG-rich region, suggesting that deletion mutation at 5'-splice site has been employed to remove this intron and the intron-like amino acid-coding nucleotides in current bacterial CapI gene are derived from exonization. These data suggest that bacterial CapI gene contained intron(s) at ancient time. This is the first report providing the result of sequence analysis to suggest possible existence of spliceosomal introns in ancestral bacterial genes. The methodology employed in this study may be used to identify more such evidence that would aid in settlement of the dispute between introns-early and introns-late theories.

15.
Sci Rep ; 6: 26502, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27199267

ABSTRACT

Quorum sensing activation by signal pheromone (CSP) in Streptococcus mutans depends on the membrane-associated receptor ComD, which senses the signal and triggers the signaling cascade for bacteriocin production and other cell density-dependent activities. However, the mechanism of the signal recognition via the ComD receptor in this species is nearly unexplored. Here, we show that the membrane domain of the ComD protein forms six transmembrane segments with three extracellular loops, loopA, loopB and loopC. By structural and functional analyses of these extracellular loops, we demonstrate that both loopC and loopB are required for CSP recognition, while loopA plays little role in CSP detection. A deletion or substitution mutation of four residues NVIP in loopC abolishes CSP recognition for quorum sensing activities. We conclude that both loopC and loopB are required for forming the receptor and residues NVIP of loopC are essential for CSP recognition and quorum sensing activation in S. mutans.


Subject(s)
Histidine Kinase/chemistry , Histidine Kinase/metabolism , Streptococcus mutans/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Point Mutation , Protein Conformation , Quorum Sensing , Streptococcus mutans/metabolism
16.
Jundishapur J Microbiol ; 8(8): e22965, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26468366

ABSTRACT

BACKGROUND: In Streptococcus mutans, ComCDE, a peptide-induced two-component signal transduction system, forms a closed signal transduction, and even if difunctional ComE closes this signal at its headstream to avoid its infinite amplification, it is not enough for ComE to work in a concentration-dependent manner. CslAB has a chance to regulate ComCDE by controlling extracellular competence-stimulating peptide (CSP) concentration through its processing and secretion. OBJECTIVES: To first confirm the binding properties of cslAB promoter (PcslAB) with ComE, then to uncover in vivo need of cslAB expression, and finally to unveil the role of CslAB. MATERIALS AND METHODS: Electrophoretic mobility shift assay was used to confirm the binding properties of PcslAB with ComE. In vivo cslAB transcription was detected by ß-galactosidase activity because its gene has been fused to cslAB operon, and finally the role of CslAB was reviewed. RESULTS: PcslAB is a weak promoter responding to ComE and its binding appears to be negative cooperative. Although PcslAB is partially controlled by ComCDE, it can respond to ComCDE regulation. Supported by the obtained molecular evidence, CslAB acts as a stabilizer of ComCDE signal on the patterns of its expression. CONCLUSIONS: PcslAB is partially controlled by ComCDE. CslAB is a stabilizer of ComCDE signal to ensure that ComE works in a concentration-dependent manner.

17.
J Bacteriol ; 195(22): 5196-206, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24039267

ABSTRACT

Streptococcus mutans develops competence for genetic transformation through a complex network that receives inputs from at least two signaling peptides, competence-stimulating peptide (CSP) and sigX-inducing peptide (XIP). The key step of competence induction is the transcriptional activation of comX, which encodes an alternative sigma factor, SigX (σ(X)), controlling the expression of late competence genes essential for DNA uptake and recombination. In this study, we provide evidence that MecA acts as a negative regulator in the posttranslational regulation of SigX in S. mutans. Using luxAB transcriptional reporter strains, we demonstrate that MecA represses the expression of late competence genes in S. mutans grown in a complex medium that is subpermissive for competence induction by CSP. The negative regulation of competence by MecA requires the presence of a functional SigX. Accordingly, inactivation of MecA results in a prolonged competence state of S. mutans under this condition. We have also found that the AAA+ protease ClpC displays a similar repressing effect on late competence genes, suggesting that both MecA and ClpC function coordinately to regulate competence in the same regulatory circuit in S. mutans. This suggestion is strongly supported by the results of bacterial two-hybrid assays, which demonstrate that MecA interacts with both SigX and ClpC, forming a ternary SigX-MecA-ClpC complex. Western blot analysis also confirms that inactivation of MecA or ClpC results in the intracellular accumulation of the SigX in S. mutans. Together, our data support the notion that MecA mediates the formation of a ternary SigX-MecA-ClpC complex that sequesters SigX and thereby negatively regulates genetic competence in S. mutans.


Subject(s)
Bacterial Proteins/metabolism , DNA Transformation Competence , Gene Expression Regulation, Bacterial , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Artificial Gene Fusion , Bacterial Proteins/genetics , Blotting, Western , Gene Deletion , Genes, Reporter , Luciferases/analysis , Luciferases/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , Transcription, Genetic , Two-Hybrid System Techniques
18.
Yi Chuan ; 34(3): 371-8, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22425957

ABSTRACT

Taq DNA polymerase is one of the most commonly thermostable DNA polymerases in molecular biological researches, which shares its basic characters with others of the family, thereby its purifying strategy could be used not only in itself production but also in the extraction of the others as a reference. At present, the protocols reported for large scale preparation of Taq DNA are high cost, so a cheaper method was described here. In this protocol, by heat denaturation, ammonium sulfate precipitation and cation exchange chromatography of 724 resin, about 18 g powder of Na form resin could recover about 27.07 mg of Taq enzyme. The total activity and specific activity were approximately 2.2 × 105 U and 8131.98 U/mg. The total yield was about 48.92% with 59.35 of purification folds. Analysis of quality of purified enzyme indicated that only one protein 94 kDa was identified against SDS-PAGE and the remnant of DNA nuclease was not detected. For PCR reaction, The amplification ability of purified Taq polymerase was not different from that of the commercially avail-able ones. This method reported in the present study is effective and low cost, making it suitable for general purification in laboratories or business production.


Subject(s)
Chromatography, Ion Exchange/methods , Escherichia coli/genetics , Taq Polymerase/genetics , Taq Polymerase/isolation & purification , Cation Exchange Resins/chemistry , Electrophoresis, Polyacrylamide Gel , Gene Expression , Polymerase Chain Reaction , Substrate Specificity , Taq Polymerase/metabolism
19.
Plant Mol Biol ; 73(1-2): 97-104, 2010 May.
Article in English | MEDLINE | ID: mdl-19823935

ABSTRACT

Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is known to play a role in inducing the dormancy. qSD12 is a major seed dormancy quantitative trait locus (QTL) identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidates from weedy rice, and determine the relation of the dormancy gene to ABA. A fine mapping experiment, followed by marker-assisted progeny testing for selected recombinants, narrowed down qSD12 to a genomic region of <75 kb, where there are nine predicted genes including a cluster of six transposon/retrotransposon protein genes and three putative (a PIL5, a hypothetic protein, and a bHLH transcription factor) genes based on the annotated Nipponbare genome sequence. The PIL5 and bHLH genes are more likely to be the QTL candidate genes. A bacterial artificial chromosome (BAC) library equivalent to 8-9 times of the haploid genome size was constructed for the weedy rice. One of the two BAC contigs developed from the library covers the PIL5 to bHLH interval. A pair of lines different only in the QTL-containing region of <200 kb was developed as isogenic lines for the qSD12 dormancy and non-dormancy alleles. The dormant line accumulated much higher ABA in 10-day developing seeds than the non-dormant line. In the QTL-containing region there is no predicted gene that has been assigned to ABA biosynthetic or metabolic pathways. Thus, it is concluded that the qSD12 underlying gene promotes ABA accumulation in early developing seeds to induce primary seed dormancy.


Subject(s)
Abscisic Acid/metabolism , Oryza/genetics , Quantitative Trait Loci , Seeds/growth & development , Alleles , Chromosomes, Artificial, Bacterial , Contig Mapping , Genes, Plant , Genomic Library , Genotype , Oryza/growth & development , Seeds/genetics
20.
Biol Proced Online ; 11: 207-26, 2009 Jun 11.
Article in English | MEDLINE | ID: mdl-19517207

ABSTRACT

Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure-function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure-activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide-receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure-activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci.

SELECTION OF CITATIONS
SEARCH DETAIL