Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Chem Commun (Camb) ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693792

ABSTRACT

In this study, we propose a novel therapy system composed of UiO-66 nanoparticles, which contain quercetin combined with chloroquine (UQCNP), to achieve dual autophagy-ubiquitination blockade. Through UiO-66 NP drug loading, the solubility of quercetin (a proteasome inhibitor) was improved under physiological conditions, thereby increasing its effective concentration at the tumor site. The cell experiment results showed that UQCNP significantly increased the apoptosis rate of 4T1 cells by 73.6%, which was significantly higher than other groups. Transmission electron microscopy results showed that the autophagosome of cells in the UQCNP treatment group was significantly lower than that in other treatment groups. Moreover, western blot results showed that, compared with other groups, LC3 expression and proteasome activity (p < 0.01), as well as the tumor volume of mice treated with UQCNP (p < 0.01) were significantly reduced. These results indicate that UQCNP achieves effective tumor therapy by blocking the autophagy and proteasome pathways synchronously.

2.
Ecotoxicol Environ Saf ; 277: 116331, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640801

ABSTRACT

Polystyrene nanoparticles are emerging as contaminants in freshwater environments, posing potential risks to amphibians exposed to extended periods of water contamination. Using tadpoles as a model, this study aimed to evaluate the toxicity of PS NPs. Pyrolysis-gas chromatography-tandem mass spectrometry (Py-GCMS) analysis revealed a concentration-dependent increase in polystyrene nanoparticles (PS NPs) levels in tadpoles with escalating exposure concentrations. Following exposure to 100 nm fluorescent microspheres, fluorescence was observed in the intestines and gills, peaking at 48 hours. Histopathological analysis identified degenerative necrosis and inflammation in the liver, along with atrophic necrosis of glomeruli and tubules in the kidneys. These results indicate a discernible impact of PS NPs on antioxidant levels, including reduced superoxide dismutase and catalase activities, elevated glutathione content, and increased malondialdehyde levels. Electron microscopy observations revealed the infiltration of PS NPs into Kupffer's cells and hepatocytes, leading to visible lesions such as nuclear condensation and mitochondrial disruption. The primary objective of this research was to elucidate the adverse effects of prolonged PS NPs exposure on amphibians.


Subject(s)
Larva , Liver , Nanoparticles , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Polystyrenes/toxicity , Oxidative Stress/drug effects , Nanoparticles/toxicity , Liver/drug effects , Liver/pathology , Water Pollutants, Chemical/toxicity , Larva/drug effects , Glutathione/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Catalase/metabolism
3.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Article in English | MEDLINE | ID: mdl-38559446

ABSTRACT

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Otitis Media , Staphylococcal Infections , Zinc Oxide , Humans , Staphylococcus aureus , Hydroxyl Radical , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Otitis Media/drug therapy , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry
5.
Sci Total Environ ; 924: 171637, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38479528

ABSTRACT

Wastewater treatment plants (WWTPs) have been regarded as the main sources of greenhouse gas (GHG) emissions. This study compares the influent characteristics of industrial wastewater represented by the WWTP of paper mill and that of domestic sewage represented by the Benchmark Simulation Model No. 1 (BSM1) under stormy weather. The various sources of GHG emissions from the two processes are calculated, and the contribution of each source to the total GHG emissions is assessed. Firstly, based on the mass balance analysis and the recognized emission factors, a GHG emission calculation model was established for the on-site and off-site GHG emission sources from the WWTP of paper mill. Simultaneously, a GHG emission experimental model was established by determining the dissolved concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) in the papermaking wastewater, to verify the accuracy of the developed GHG calculation model. Subsequently, an optimum aeration rate for the paper mill was investigated to comply with the discharging norms. Under the optimum aeration rate of 10 h-1, the obtained calculation accuracies of CO2 and N2O emissions were 94.6 % and 91.1 %, respectively. The mean total GHG emission in the WWTP of paper mill was 550 kg CO2-eq·h-1, of which 44.6 % came from the on-site emission sources and 55.4 % from the off-site emission sources. It was also uncovered that the electrical consumption for aeration was the largest contributor to the total GHG emissions with a proportion of 25.2 %, revealing that the control strategy of the aeration rate is highly significant in reducing GHG emissions in WWTP of paper mills.

6.
J Nanobiotechnology ; 22(1): 99, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461229

ABSTRACT

The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 µg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.


Subject(s)
Influenza A virus , Influenza, Human , Metal-Organic Frameworks , Orthomyxoviridae Infections , Phthalic Acids , Mice , Humans , Animals , Orthomyxoviridae Infections/drug therapy , Signal Transduction , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
7.
J Neurointerv Surg ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38124230

ABSTRACT

BACKGROUND: Recently, a randomized controlled trial showed a beneficial effect of intra-arterial thrombolysis following successful endovascular thrombectomy (EVT) in patients with acute ischemic stroke due to large vessel occlusion in the anterior circulation. Due to differences in response to thrombolytics in occlusion of the posterior circulation, the purpose of ATTENTION IA is to explore the adjunct benefit of intra-arterial thrombolysis after successful recanalization in patients presenting with large and medium vessel occlusion of the posterior circulation. METHODS: ATTENTION-IA is an investigator-initiated, multicenter, prospective, randomized clinical trial with open-label treatment and blinded endpoint assessment (PROBE). After achieving successful recanalization (expanded Thrombolysis In Cerebral Infarction (eTICI) 2b-3) of an occlusion of the vertebral, basilar, or posterior cerebral artery, patients will be randomized 1:1 to receive intra-arterial tenecteplase or standard of care. The primary effect parameter is a modified Rankin Score of 0-1 at day 90. RESULTS: The trial recently completed enrollment, and data collection/verification is ongoing. The final results will be made available on completion of enrollment and follow-up. CONCLUSIONS: ATTENTION-IA will provide definitive evidence for the efficacy and safety of adjunct intra-arterial tenecteplase after successful EVT in patients with an acute posterior circulation arterial occlusion stroke presenting within 24 hours of symptom onset. TRIAL REGISTRATION: ClinicalTrials.gov NCT05684172.

8.
Emerg Microbes Infect ; 12(2): 2276336, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882369

ABSTRACT

Hepatitis E virus (HEV) has become one of the important pathogens that threaten the global public health. Type 3 and 4 HEV are zoonotic, which can spread vertically and cause placental damage. At the same time, autophagy plays an important role in the process of embryo development and pregnancy maintenance. However, the relationship between HEV and autophagy, especially in the placenta tissue, has not been clarified. We found lower litter rates in HEV-infected female mice, with significant intrauterine abortion of the embryo (24.19%). To explore the effects of HEV infection on placenta autophagy, chorionic cells (JEG-3) and mice placenta have been employed as research objects, while the expression of autophagy-related proteins (ATGs) has been detected in JEG-3 cells with different times of HEV inoculation. The results demonstrated that the expression of protein LC3 decreased and p62 accumulated, meanwhile ATGs such as ATG4B, ATG5, and ATG9A in JEG-3 cells have decreased significantly. In addition, the maturation of autophagosomes, which referred to the process of the combination of autophagosomes and lysosomes was prevented by HEV infection as well. All processes of autophagic flux, which include the initiation, development, and maturation three stages, were suppressed in JEG-3 cells after HEV infection. Similarly, the protein and gene expression of LC3 were significantly decreased in the placenta of pregnant mice with HEV infection. In summary, our results suggested that HEV inhibited autophagy in JEG-3 cells and placenta of pregnant mice, which might be the important pathogenic mechanisms of HEV infection leading to embryo abortion.


Subject(s)
Hepatitis E virus , Hepatitis E , Pregnancy , Female , Animals , Mice , Placenta , Trophoblasts/metabolism , Hepatitis E virus/genetics , Cell Line, Tumor , Autophagy/physiology
9.
Phytother Res ; 37(12): 5509-5528, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641491

ABSTRACT

The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.


Subject(s)
Ischemic Stroke , Stroke , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ischemic Stroke/drug therapy , Stroke/drug therapy , Stroke/pathology , Phytotherapy
10.
J Stroke ; 25(3): 399-408, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37607695

ABSTRACT

BACKGROUND AND PURPOSE: To examine the clinical and safety outcomes after endovascular treatment (EVT) for acute basilar artery occlusion (BAO) with different anesthetic modalities. METHODS: This was a retrospective analysis using data from the Endovascular Treatment for Acute Basilar Artery Occlusion (ATTENTION) registry. Patients were divided into two groups defined by anesthetic modality performed during EVT: general anesthesia (GA) or non-general anesthesia (non-GA). The association between anesthetic management and clinical outcomes was evaluated in a propensity score matched (PSM) cohort and an inverse probability of treatment weighting (IPTW) cohort to adjust for imbalances between the two groups. RESULTS: Our analytic sample included 1,672 patients from 48 centers. The anesthetic modality was GA in 769 (46.0%) and non-GA in 903 (54.0%) patients. In our primary analysis with the PSM-based cohort, non-GA was comparable to GA concerning the primary outcome (adjusted common odds ratio [acOR], 1.01; 95% confidence interval [CI], 0.82 to 1.25; P=0.91). Mortality at 90 days was 38.4% in the GA group and 35.8% in the non-GA group (adjusted risk ratio, 0.95; 95% CI, 0.83 to 1.08; P=0.44). In our secondary analysis with the IPTW-based cohort, the anesthetic modality was significantly associated with the distribution of modified Rankin Scale at 90 days (acOR: 1.45 [95% CI: 1.20 to 1.75]). CONCLUSION: In this nationally-representative observational study, acute ischemic stroke patients due to BAO undergoing EVT without GA had similar clinical and safety outcomes compared with patients treated with GA. These findings provide the basis for large-scale randomized controlled trials to test whether anesthetic management provides meaningful clinical effects for patients undergoing EVT.

11.
Article in English | MEDLINE | ID: mdl-37362100

ABSTRACT

Shudage-4, an ancient and well-known formula in traditional Mongolian medicine comprising four different types of traditional Chinese medicine, is widely used in the treatment of gastric ulcers. However, the potential material basis and molecular mechanism of Shudage-4 in attenuating stress-induced gastric ulcers remain unclear. This study aimed to first explore the potential material basis and molecular mechanism of Shudage-4 in attenuating gastric ulcers in rats. The chemical constituents and transitional components in the blood of Shudage-4 were identified by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS). The rat gastric ulcer model was induced by water immersion restraint stress (WIRS). The ulcer damage to gastric tissue was measured at the gross anatomical level and pathological level by hematoxylin-eosin (HE) staining of gastric tissue. RNA sequencing of gastric tissue and plasma metabolomics were performed to analyze the mechanism of Shudage-4 against gastric ulcers. A Pearson correlation analysis was performed to explore the association between serum metabolites and gene expression of gastric tissue. A total of 30 chemical constituents were identified in Shudage-4 by UPLC-TOF-MS. Among 30 constituents, 13 transitional components in the blood were considered as the potential material basis. Shudage-4 treatment had a significant effect on WIRS-induced gastric ulcers in rats. HE staining of gastric tissue illustrated that WIRS-induced ulcer damage was suppressed by Shudage-4 treatment. RNA sequencing of gastric tissue showed that 282 reversed expression genes in gastric tissue were related to Shudage-4 treatment, and gene set enrichment analysis revealed that Shudage-4 treatment significantly inhibited gene set expression related to reactive oxygen species (ROS), which was also validated by detecting rat gastric tissue MDA, GSH, SOD, GSH-Px, and CAT activities. The plasma metabolomic data demonstrated that 23 significantly differential metabolites were closely associated with the Shudage-4 treatment. The further multiomics joint analysis found that significantly upregulated 5 plasma metabolites in Shudage-4-treated rats compared to model rats were negatively correlated with gene set expression related to ROS in gastric tissue. Shudage-4 alleviated WIRS-induced gastric ulcers by inhibiting ROS generation, which was achieved by regulating plasma metabolites level.

12.
Pharmacol Res ; 193: 106803, 2023 07.
Article in English | MEDLINE | ID: mdl-37230158

ABSTRACT

Although strides have been made, the challenge of preventing and treating ischemic stroke continues to persist globally. For thousands of years, the natural substances Frankincense and Myrrh have been employed in Chinese and Indian medicine to address cerebrovascular diseases, with the key components of 11-keto-ß-boswellic acid (KBA) and Z-Guggulsterone (Z-GS) being the active agents. In this study, the synergistic effect and underlying mechanism of KBA and Z-GS on ischemic stroke were examined using single-cell transcriptomics. Fourteen cell types were identified in KBA-Z-GS-treated ischemic penumbra, and microglia and astrocytes account for the largest proportion. They were further re-clustered into six and seven subtypes, respectively. GSVA analysis reflected the distinct roles of each subtype. Pseudo-time trajectory indicated that Slc1a2 and Timp1 were core fate transition genes regulated by KBA-Z-GS. In addition, KBA-Z-GS synergistically regulated inflammatory reactions in microglia and cellular metabolism and ferroptosis in astrocytes. Most notably, we established an innovative drug-gene synergistic regulation pattern, and genes regulated by KBA-Z-GS were divided into four categories based on this pattern. Finally, Spp1 was demonstrated as the hub target of KBA-Z-GS. Taken together, this study reveals the synergistic mechanism of KBA and Z-GS on cerebral ischemia, and Spp1 may be the synergistic target for that. Precise drug development targeting Spp1 may offer a potential therapeutic approach for treating ischemic stroke.


Subject(s)
Ischemic Stroke , Triterpenes , Humans , Transcriptome , Triterpenes/pharmacology , Triterpenes/therapeutic use
13.
Digit Health ; 9: 20552076231169846, 2023.
Article in English | MEDLINE | ID: mdl-37101588

ABSTRACT

Background: As a neuroprotective agent, ellagic acid (EA) is extremely beneficial. Our previous study found that EA can alleviate sleep deprivation (SD)-induced abnormal behaviors, although the mechanisms underlying this protective effect have not yet been fully elucidated. Objective: An integrated network pharmacology and targeted metabolomics approach was utilized in this study to investigate the mechanism of EA against SD-induced memory impairment and anxiety. Methods: Behavioral tests were conducted on mice after 72 h of SD. Hematoxylin and eosin staining and nissl staining were then carried out. Integration of network pharmacology and targeted metabolomics was performed. Eventually, the putative targets were further verified using molecular docking analyses and immunoblotting assays. Results: The present study findings confirmed that EA ameliorated the behavioral abnormalities induced by SD and prevented histopathological and morphological damage to hippocampal neurons. Through multivariate analysis, clear clustering was obtained among different groups, and potential biomarkers were identified. Four key targets, catechol-O-methyltransferase (COMT), cytochrome P450 1B1 (CYP1B1), glutathione S-transferase A2 (GSTA2), and glutathione S-transferase P1 (GSTP1), as well as the related potential metabolites and metabolic pathways, were determined by further integrated analysis. Meanwhile, in-silico studies revealed that EA is well located inside the binding site of CYP1B1 and COMT. The experimental results further demonstrated that EA significantly reduced the increased expression of CYP1B1 and COMT caused by SD. Conclusion: The findings of this study extended our understanding of the underlying mechanisms by which EA treats SD-induced memory impairment and anxiety, and suggested a novel approach to address the increased health risks associated with sleep loss.

14.
Curr Res Food Sci ; 6: 100462, 2023.
Article in English | MEDLINE | ID: mdl-36866197

ABSTRACT

Epidemiology studies have indicated that polyphenol consumption was more likely to have higher sleep quality, but some results remain controversial. A general overview of polyphenol-rich interventions on sleep disorders still lacks in the existing literature. Eligible randomized controlled trials (RCT's) literature retrieval was performed in six databases. Sleep efficiency, sleep onset latency, total sleep time, and PSQI were included as objective measures to compare the effects of placebo and polyphenols in patients with sleep disorders. Subgroup-analyses were performed based on treatment duration, geographic location, study design, and sample size. The mean differences (MD) with 95% confidence intervals (CI) were adopted for four continuous variable data of outcomes in pooled analysis. This study is registered on PROSPERO, number CRD42021271775. In total, 10 studies of 334 individuals were included. Pooled data demonstrated that administration of polyphenols decreases sleep onset latency (MD, -4.38 min; 95% CI, -6.66 to -2.11; P = 0.0002) and increases total sleep time (MD, 13.14 min; 95% CI, 7.54 to 18.74; P<0.00001), whereas they have no effect on sleep efficiency (MD, 1.04; 95% CI, -0.32 to 2.41; P = 0.13) and PSQI (MD, -2.17; 95% CI, -5.62 to 1.29; P = 0.22). Subgroup analyses further indicated that treatment duration, study design, and number of participants appeared to be responsible for the largest proportion of accountable heterogeneity. Polyphenols' potential importance is highlighted by these findings in treating sleep disorders. The development of large-scale, randomized, controlled trials is recommended to providing further evidence for therapeutic use of polyphenols in a variety of sleep difficulties.

15.
Small ; 19(14): e2205682, 2023 04.
Article in English | MEDLINE | ID: mdl-36604977

ABSTRACT

The self-preservation and intelligent survival abilities of methicillin-resistant Staphylococcus aureus (MRSA) result in the ineffective treatment of many antibiotics. Nano-drug delivery systems have emerged as a new strategy to overcome MRSA infection. ZIF-8 nanoparticles (ZIF-8 NPs) exhibit good antibacterial activities, while its molecular mechanisms are largely elusive. In this study, the ZIF-8 NPs are prepared using the room temperature solution reaction method. The values of minimum inhibitory concentration of ZIF-8 NPs against Escherichia coli and MRSA isolates are 25 and 12.5 µg mL-1 , respectively. Transcriptome and metabonomic analyses reveal that ZIF-8 NPs could trigger the inhibition of arginine biosynthesis pathway and the production of ROS, which lead to dysfunctional tricarboxylic acid cycle and disruption of cell membrane integrity, eventually killing MRSA isolates. Moreover, ZIF-8 NPs show desirable treatment and repair effects on mice model of MRSA isolates wound infected-model. The results, for the first time, reveal that the inhibition of arginine biosynthesis mediates the production of ROS and energy metabolism dysfunction contributes to the antibacterial ability of ZIF-8 NPs against MRSA. This study offers a new insight into ZIF-8 NPs combating MRSA isolates.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Zeolites , Animals , Mice , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Arginine/pharmacology
16.
Microbiol Spectr ; : e0469822, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719201

ABSTRACT

Environmental (restraint stress) and dietary (high fructose) factors are key triggers for flares of inflammatory bowel disease; however, the mechanisms involved in this phenomenon are not fully elucidated. This study aimed to investigate the mechanisms by which restraint stress and high fructose damage the intestinal mucosal immune barrier. The feces of C57BL/6J mice were subjected to 16S rRNA and untargeted metabolome sequencing, and the intestinal histological structure was analyzed by immunohistochemistry and immunofluorescence staining. The mRNA and protein levels of the intestinal protein were analyzed by reverse transcription-PCR (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). The metabolites of the microbiota were tested in vitro, and Akkermansia muciniphila was used for colonization in vivo. Dietary fructose exacerbated the development of restraint stress, with an extensive change in the composition of the gut microbiota and microbial metabolites. The disturbance of the microbiota composition led to an increase in the abundance of histamine and a decrease in the abundance of taurine, which inhibited the expression of tight junction and MUC2 proteins, destroyed the function of NLRP6, and reduced intestinal autophagy level; this in turn disrupted the function of colonic goblet cells to secrete mucus, leading to defects in the intestinal mucosal barrier, which ultimately codrives colon autoinflammation. However, A. muciniphila supplementation counteracted damage to the intestinal mucosal barrier by high fructose and restraint stress. Therefore, the gut microbiota and microbiota metabolites play an important role in maintaining microenvironment homeostasis of the intestinal mucosal barrier. IMPORTANCE A high-fructose diet aggravated restraint stress-induced changes in the composition of the intestinal microbiome, in which the abundance of A. muciniphila was significantly increased. The high-fructose diet exacerbated restraint stress-induced the changes in the composition of the microbial metabolites, with taurine abundance being downregulated and histamine abundance upregulated. High fructose and restraint stress induced colonic mucosal immune barrier damage, possibly due to changes in the abundance of the microbial metabolites taurine and histamine. Colonization with A. muciniphila stimulated the expression of the NLRP6 inflammasome and activated autophagy in goblet cells, thereby producing more new mucins, which could protect the intestinal mucosal barrier.

17.
Mitochondrial DNA B Resour ; 8(11): 1165-1168, 2023.
Article in English | MEDLINE | ID: mdl-38188438

ABSTRACT

Salicornia europaea is a salt-tolerant eudicot species in the Amaranthaceae family that is widely distributed in coastal wetlands and other saline-alkali lands. In this study, the complete chloroplast genome of S. europaea was determined using Illumina paired-end sequencing technology. The genome was 153,163 bp in length with 132 genes, including 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The genome displayed a quadripartite structure consisting of a small single-copy (SSC) region of 18,953 bp, a large single-copy (LSC) region of 84,566 bp, and two inverted repeats (IRs) of 49,644 bp, respectively. The phylogenetic analysis indicated that Salicornia europaea exhibited the closest relationship with S. bigelovii. This study contributes to the pool of salt-tolerant gene species and serves as a valuable reference for further research on Salicornia.

18.
ACS Omega ; 7(49): 44657-44669, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530329

ABSTRACT

The proliferation of microorganisms is an important reason for meat spoilage and deterioration. Freezing and packaging by polymer films and preservatives are commonly used to preserve meat. While the energy consumption of freezing is very big, the polymer films made by petroleum bring up heavy environmental pressure. In the present study, biodegradable antibacterial ZnO@PLA (ZP) and ZnO@PVA/PLA (ZPP) nanocomposite films used as food packaging have been synthesized by the solvent evaporation method and coating method, respectively. Compared with films without ZnO NPs, ZP and ZPP both had long-term bacteriostasis for 24 and 120 h at temperatures of 25 and 4 °C, respectively. Moreover, the antibacterial effect showed positive relevance with the increase of the ZnO NP concentration. In addition, the antibacterial effect of ZPP was better than that of ZP in the same condition. Scanning electron microscopy showed that the numbers of methicillin-resistant staphylococcus aureus (MRSA) on ZP and ZPP were significantly reduced compared to that in the blank film, and ZPP caused the morphology of MRSA to change, which means that the antibacterial mechanism of ZP and ZPP composite films might be related to antibacterial adhesion. In conclusion, ZPP films have great potential to be regarded as the candidate of food packing to extend the shelf life of pork.

19.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499473

ABSTRACT

UVB radiation is known to trigger the block of DNA replication and transcription by forming cyclobutane pyrimidine dimer (CPD), which results in severe skin damage. CPD photolyase, a kind of DNA repair enzyme, can efficiently repair CPDs that are absent in humans and mice. Although exogenous CPD photolyases have beneficial effects on skin diseases, the mechanisms of CPD photolyases on the skin remain unknown. Here, this study prepared CPD photolyase nanoliposomes (CPDNL) from Antarctic Chlamydomonas sp. ICE-L, which thrives in harsh, high-UVB conditions, and evaluated their protective mechanisms against UVB-induced damage in mice. CPDNL were optimized using response surface methodology, characterized by a mean particle size of 105.5 nm, with an encapsulation efficiency of 63.3%. Topical application of CPDNL prevented UVB-induced erythema, epidermal thickness, and wrinkles in mice. CPDNL mitigated UVB-induced DNA damage by significantly decreasing the CPD concentration. CPDNL exhibited antioxidant properties as they reduced the production of reactive oxygen species (ROS) and malondialdehyde. Through activation of the NF-κB pathway, CPDNL reduced the expression of pro-inflammatory cytokines including IL-6, TNF-α, and COX-2. Furthermore, CPDNL suppressed the MAPK signaling activation by downregulating the mRNA and protein expression of ERK, JNK, and p38 as well as AP-1. The MMP-1 and MMP-2 expressions were also remarkably decreased, which inhibited the collagen degradation. Therefore, we concluded that CPDNL exerted DNA repair, antioxidant, anti-inflammation, and anti-wrinkle properties as well as collagen protection via regulation of the NF-κB/MAPK/MMP signaling pathways in UVB-induced mice, demonstrating that Antarctic CPD photolyases have the potential for skincare products against UVB and photoaging.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Microalgae , Animals , Humans , Mice , Antioxidants/pharmacology , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , DNA Damage , Microalgae/metabolism , NF-kappa B/genetics , Pyrimidine Dimers/metabolism , Ultraviolet Rays
20.
Vaccine ; 40(52): 7613-7621, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36371365

ABSTRACT

Searching appropriate adjuvants for vaccine is a potent method to intense the immune efficacy. In the present study, we developed a novel Hepatitis E virus (HEV) vaccine by utilizing chitosan modified nano-graphene oxide (GO-CS) as an adjuvant to support HEV antigen P239 protein (GO/CS/P239). The characterization of GO/CS/P239 was observed by atomic force microscope. The safety of GO/CS/P239 was measured by CCK-8 method, hemolysis test and acute challenge test. The anti-HEV titers and cytokines production were analyzed by double antibody sandwich ELISA. As the results showed, by contrast with a vaccine that contained only the P239 protein, GO/CS/P239 vaccine can promote immune cells to produce more IgG antibodies and cytokines, which were able to stimulate the organism to produce stronger both cellular and humoral immunity. Collectively, GO/CS/P239 particles have been demonstrated to be safe both in vitro and in vivo, and can facilitate sufficient immune response to protect organisms from virus infection, which suggested that our exploration offers a promising alternative vaccine that can control HEV infection.


Subject(s)
Chitosan , Hepatitis E virus , Viral Hepatitis Vaccines , Adjuvants, Immunologic , Cytokines , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...