Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391609

ABSTRACT

Single-view cone-beam X-ray luminescence computed tomography (CB-XLCT) has recently gained attention as a highly promising imaging technique that allows for the efficient and rapid three-dimensional visualization of nanophosphor (NP) distributions in small animals. However, the reconstruction performance is hindered by the ill-posed nature of the inverse problem and the effects of depth variation as only a single view is acquired. To tackle this issue, we present a methodology that integrates an automated restarting strategy with depth compensation to achieve reconstruction. The present study employs a fast proximal gradient descent (FPGD) method, incorporating L0 norm regularization, to achieve efficient reconstruction with accelerated convergence. The proposed approach offers the benefit of retrieving neighboring multitarget distributions without the need for CT priors. Additionally, the automated restarting strategy ensures reliable reconstructions without the need for manual intervention. Numerical simulations and physical phantom experiments were conducted using a custom CB-XLCT system to demonstrate the accuracy of the proposed method in resolving adjacent NPs. The results showed that this method had the lowest relative error compared to other few-view techniques. This study signifies a significant progression in the development of practical single-view CB-XLCT for high-resolution 3-D biomedical imaging.

2.
Comput Methods Programs Biomed ; 229: 107265, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455470

ABSTRACT

BACKGROUND AND OBJECTIVE: As an emerging dual-mode optical molecular imaging, cone-beam X-ray luminescence computed tomography (CB-XLCT) has shown potential in early tumor diagnosis and other applications with increased depth and little autofluorescence. However, due to the low transfer efficiency of PNPs to convert X-ray energy to visible or near-infrared (NIR) light and X-ray dose limitation, the signal to noise ratio of projections is quite low, making the quality of CB-XLCT relatively poor. METHODS: To improve the reconstruction quality of low-counts CB-XLCT imaging, an adaptive reconstruction algorithm (named ADFISTA-MLEM) based on the maximum likelihood expectation estimation (MLEM) framework is proposed for CB-XLCT reconstruction from Poisson distributed projections. In the proposed framework, the image reconstructed by fast iterative shrinkage-thresholding algorithm (FISTA) is used as the initial image for MLEM iterations to improve reconstruction accuracy, in which both the projection noise model and the sparsity constraint of the image could be considered. For relative quantitative imaging, a specific normalization is applied to the projection data and system matrix. To determine the hyperparameter of FISTA, which may be different for different projections, an adaptive strategy (ADFISTA) is then designed for adaptive update of the hyperparameter with reconstructed image in each iteration. RESULTS AND CONCLUSIONS: Results from numerical simulations and phantom experiments indicate that the proposed framework can obtain superior reconstruction accuracy in terms of contrast to noise ratio and shape similarity. In addition, high intensity-concentration linearity between different probe targets indicates its potential for quantitative CB-XLCT imaging.


Subject(s)
Image Processing, Computer-Assisted , Luminescence , X-Rays , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Phantoms, Imaging , Algorithms
3.
J Biomed Opt ; 25(1): 1-14, 2020 01.
Article in English | MEDLINE | ID: mdl-31970943

ABSTRACT

Significance: As a promising hybrid imaging technique with x-ray excitable nanophosphors, cone-beam x-ray luminescence computed tomography (CB-XLCT) has been proposed for in-depth biological imaging applications. In situations in which the full rotation of the imaging object (or x-ray source) is inapplicable, the x-ray excitation is limited by geometry, or a lower x-ray excitation dose is mandatory, limited view CB-XLCT reconstruction would be essential. However, this will result in severe ill-posedness and poor image quality.

Aim: The aim is to develop a limited view CB-XLCT imaging strategy to reduce the scanning span and a corresponding reconstruction method to achieve robust imaging performance.

Approach: In this study, a group sparsity-based reconstruction method is proposed with the consideration that nanophosphors usually cluster in certain regions, such as tumors or major organs such as the liver. In addition, depth compensation (DC) is adopted to avoid the depth inconsistency caused by a limited view strategy.

Results: Experiments using numerical simulations and physical phantoms with different edge-to-edge distances were carried out to illustrate the validity of the proposed method. The reconstruction results showed that the proposed method outperforms conventional methods in terms of localization accuracy, target shape, image contrast, and spatial resolution with two perpendicular projections.

Conclusions: A limited view CB-XLCT imaging strategy with two perpendicular projections and a reconstruction method based on DC and group sparsity, which is essential for fast CB-XLCT imaging and for some practical imaging applications, such as imaging-guided surgery, is proposed.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Surgery, Computer-Assisted , Tomography, X-Ray Computed/methods , Algorithms , Cone-Beam Computed Tomography/instrumentation , Diagnostic Tests, Routine , Humans , Luminescence
4.
Bioconjug Chem ; 30(8): 2191-2200, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31344330

ABSTRACT

X-ray excited photodynamic therapy (X-PDT), which utilizes X-rays as the energy source and X-ray luminescent nanoparticles (XLNPs) as the transducer to excite photosensitizers (PS), resolves the penetration problem of light in traditional PDT to enable the treatment of deep-seated tumors. Nevertheless, the high X-ray dosage used in X-PDT hampers its potential applications in clinics. In this study, to alleviate the dose problem, ß-NaLuF4:Tb3+ spherical nanoparticles (NPs) with ultrastrong green X-ray excited optical luminescence (XEOL) due to the less nonradiative relaxation probability and high X-ray absorption mass coefficient, which perfectly matches the absorption spectrum of a photosensitizer named rose bengal (RB), were synthesized and employed as the energy transducer for X-PDT. After covalent conjugation of NPs with RB, high Förster resonant energy transfer (FRET) efficiency up to 94.29% was achieved, leading to high production of singlet oxygen. In vivo X-PDT efficacy was evaluated by nude mice with a HepG2 tumor xenograft. With excellent biocompatibility, the synthesized NPs-RB nanocomposite showed significant antitumor efficiency up to 80 ± 12.3% with a total X-ray dose of only 0.19 Gy, demonstrating the feasibility of low-dose X-PDT in vivo for the first time. The present work provides a promising platform for X-PDT in deep-seated tumors.


Subject(s)
Nanocomposites/chemistry , Nanoparticles/chemistry , Neoplasms/therapy , Photochemotherapy/methods , Photosensitizing Agents/radiation effects , X-Rays , Animals , Cell Line, Tumor , Hep G2 Cells , Heterografts , Humans , Mice , Nanoparticles/therapeutic use , Rose Bengal
5.
Biomed Opt Express ; 10(1): 1-17, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30775079

ABSTRACT

As an emerging hybrid imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed based on the development of X-ray excitable nanoparticles. Owing to the high degree of absorption and scattering of light through tissues, the CB-XLCT inverse problem is inherently ill-conditioned. Appropriate priors or regularizations are needed to facilitate reconstruction and to restrict the search space to a specific solution set. Typically, the goal of CB-XLCT reconstruction is to get the distributions of nanophosphors in the imaging object. Considering that the distributions of nanophosphors inside bodies preferentially accumulate in specific areas of interest, the reconstruction of XLCT images is usually sparse with some locally smoothed high-intensity regions. Therefore, a combination of the L1 and total variation regularization is designed to improve the imaging quality of CB-XLCT in this study. The L1 regularization is used for enforcing the sparsity of the reconstructed images and the total variation regularization is used for maintaining the local smoothness of the reconstructed image. The implementation of this method can be divided into two parts. First, the reconstruction image was reconstructed based on the fast iterative shrinkage-thresholding (FISTA) algorithm, then the reconstruction image was minimized by the gradient descent method. Numerical simulations and phantom experiments indicate that compared with the traditional ART, ADAPTIK and FISTA methods, the proposed method demonstrates its advantage in improving spatial resolution and reducing imaging time.

6.
Biomed Opt Express ; 9(6): 2844-2858, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30258694

ABSTRACT

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has become a promising technique for its higher utilization of X-ray and shorter scanning time compared to the narrow-beam XLCT, but it suffers from the low-spatial resolution that results in the insufficiency to resolve the adjacent multiple probes. In multispectral CB-XLCT, multiple probes show different emission behaviors in the dimension of the spectrum. In this work, a spectral-resolved CB-XLCT method combining multispectral CB-XLCT with principle component analysis (PCA) was proposed to improve the imaging resolution. Results of digital simulation and the phantom experiment illustrated that the proposed method was capable of resolving adjacent multiple probes accurately and had better performance than the common multispectral CB-XLCT with spectrum information priori.

7.
Opt Express ; 26(18): 23233-23250, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184978

ABSTRACT

Cone beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a promising hybrid imaging technique. Though it has the advantage of fast imaging, the inverse problem of CB-XLCT is seriously ill-conditioned, making the image quality quite poor, especially for imaging multi-targets. To achieve fast imaging of multi-targets, which is essential for in vivo applications, a truncated singular value decomposition (TSVD) based sparse view CB-XLCT reconstruction method is proposed in this study. With the weight matrix of the CB-XLCT system being converted to orthogonal by TSVD, the compressed sensing (CS) based L1-norm method could be applied for fast reconstruction from fewer projection views. Numerical simulations and phantom experiments demonstrate that by using the proposed method, two targets with different edge-to-edge distances (EEDs) could be resolved effectively. It indicates that the proposed method could improve the imaging quality of multi-targets significantly in terms of localization accuracy, target shape, image contrast, and spatial resolution, when compared with conventional methods.

8.
Biomaterials ; 184: 31-40, 2018 11.
Article in English | MEDLINE | ID: mdl-30195803

ABSTRACT

The limitation of light penetration depth invalidates the application of photodynamic therapy in deep-seated tumors. X-ray excited photodynamic therapy (X-PDT), which is based on X-rays excited luminescent nanoparticles (XLNP), provides a new strategy for PDT in deep tissues. However, the high X-ray dosage used and non-specific cytotoxicity of the nanoparticle-photosensitizer nanocomposite (NPs-PS) hamper in-vivo X-PDT applications. To address these problems, a simple and efficient NPs-PS nanocomposite using ß-NaGdF4: Tb3+ nanoparticles and widely used PS called Rose Bengal (RB) was designed. With perfectly matched spectrum of NPs emission and RB absorption upon X-ray excitation and covalent conjugation of a large amount of RB on NP surfaces to minimize the energy transfer distance, the system demonstrated ultra-high FRET efficiency up to 99.739%, which leads to maximum production of singlet oxygen for PDT with significantly increased anti-tumor efficacy. By 2-aminoethylphosphonic acid surface modification of NPs, excellent biocompatibility was achieved even at a high concentration of 1 mg/mL. The in-vivo X-PDT efficacy was found around 90% of HepG2 tumor growth inhibition with X-ray dose of only 1.5 Gy, which shows the best anti-tumor efficacy at same X-ray dose level reported so far. The present work provides a promising platform for in-vivo X-PDT in deep tumors.


Subject(s)
Gadolinium/chemistry , Nanocomposites/chemistry , Photosensitizing Agents/chemistry , Rose Bengal/chemistry , Terbium/chemistry , Animals , Cell Survival , Female , Fluorescence Resonance Energy Transfer , Hep G2 Cells , Humans , Mice, Inbred BALB C , Photochemotherapy , Singlet Oxygen/metabolism , X-Rays
9.
J Biomed Opt ; 23(2): 1-11, 2018 02.
Article in English | MEDLINE | ID: mdl-29473348

ABSTRACT

With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Absorption, Physicochemical , Algorithms , Computer Simulation , Phantoms, Imaging
10.
Biomed Opt Express ; 8(9): 3952-3965, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29026681

ABSTRACT

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a new molecular imaging modality recently. It can obtain both anatomical and functional tomographic images of an object efficiently, with the excitation of nanophosphors in vivo or in vitro by cone-beam X-rays. However, the ill-posedness of the CB-XLCT inverse problem degrades the image quality and makes it difficult to resolve adjacent luminescent targets with different concentrations, which is essential in the monitoring of nanoparticle metabolism and drug delivery. To address this problem, a multi-voltage excitation imaging scheme combined with principal component analysis is proposed in this study. Imaging experiments performed on physical phantoms by a custom-made CB-XLCT system demonstrate that two adjacent targets, with different concentrations and an edge-to-edge distance of 0 mm, can be effectively resolved.

11.
Int J Comput Assist Radiol Surg ; 12(4): 645-656, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28110476

ABSTRACT

PURPOSE: This study aims to determine the three-dimensional (3D) texture features extracted from intensity and high-order derivative maps that could reflect textural differences between bladder tumors and wall tissues, and propose a noninvasive, image-based strategy for bladder tumor differentiation preoperatively. METHODS: A total of 62 cancerous and 62 wall volumes of interest (VOI) were extracted from T2-weighted MRI datasets of 62 patients with pathologically confirmed bladder cancer. To better reflect heterogeneous distribution of tumor tissues, 3D high-order derivative maps (the gradient and curvature maps) were calculated from each VOI. Then 3D Haralick features based on intensity and high-order derivative maps and Tamura features based on intensity maps were extracted from each VOI. Statistical analysis and recursive feature elimination-based support vector machine classifier (RFE-SVM) was proposed to first select the features with significant differences and then obtain a more predictive and compact feature subset to verify its differentiation performance. RESULTS: From each VOI, a total of 58 texture features were derived. Among them, 37 features showed significant inter-class differences ([Formula: see text]). With 29 optimal features selected by RFE-SVM, the classification results namely the sensitivity, specificity, accuracy and area under the curve (AUC) of the receiver operating characteristics were 0.9032, 0.8548, 0.8790 and 0.9045, respectively. By using synthetic minority oversampling technique to augment the sample number of each group to 200, the sensitivity, specificity, accuracy an AUC value of the feature selection-based classification were improved to 0.8967, 0.8780, 0.8874 and 0.9416, respectively. CONCLUSIONS: Our results suggest that 3D texture features derived from intensity and high-order derivative maps can better reflect heterogeneous distribution of cancerous tissues. Texture features optimally selected together with sample augmentation could improve the performance on differentiating bladder carcinomas from wall tissues, suggesting a potential way for tumor noninvasive staging of bladder cancer preoperatively.


Subject(s)
Magnetic Resonance Imaging/methods , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional/methods , Male , Sensitivity and Specificity , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...