Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Insects ; 15(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786904

ABSTRACT

Spodoptera exempta, known as the black armyworm, has been extensively documented as an invasive agricultural pest prevalent across various crop planting regions globally. However, the potential geographical distribution and the threat it poses to host crops of remains unknown at present. Therefore, we used an optimized MaxEnt model based on 841 occurrence records and 19 bioclimatic variables to predict the potential suitable areas of S. exempta under current and future climatic conditions, and the overlap with wheat, rice, and maize planting areas was assessed. The optimized model was highly reliable in predicting potential suitable areas for this pest. The results showed that high-risk distribution areas for S. exempta were mainly in developing countries, including Latin America, central South America, central Africa, and southern Asia. Moreover, for the three major global food crops, S. exempta posed the greatest risk to maize planting areas (510.78 × 104 km2), followed by rice and wheat planting areas. Under future climate scenarios, global warming will limit the distribution of S. exempta. Overall, S. exempta had the strongest effect on global maize production areas and the least on global wheat planting areas. Our study offers a scientific basis for global prevention of S. exempta and protection of agricultural crops.

2.
Insect Mol Biol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808749

ABSTRACT

DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.

3.
Front Plant Sci ; 15: 1393663, 2024.
Article in English | MEDLINE | ID: mdl-38817934

ABSTRACT

Cabomba caroliniana A. Gray, an ornamental submerged plant indigenous to tropical America, has been introduced to numerous countries in Europe, Asia, and Oceania, impacting native aquatic ecosystems. Given this species is a popular aquarium plant and widely traded, there is a high risk of introduction and invasion into other environments. In the current study the potential global geographic distribution of C. caroliniana was predicted under the effects of climate change and human influence in an optimised MaxEnt model. The model used rigorously screened occurrence records of C. caroliniana from hydro informatic datasets and 20 associated influencing factors. The findings indicate that temperature and human-mediated activities significantly influenced the distribution of C. caroliniana. At present, C. caroliniana covers an area of approximately 1531×104 km2 of appropriate habitat, especially in the south-eastern parts of South, central and North America, Southeast Asia, eastern Australia, and most of Europe. The suitable regions are anticipated to expand under future climate scenarios; however, the dynamics of the changes vary between different extents of climate change. For example, C. caroliniana is expected to expand to higher latitudes, following global temperature increases under SSP1-2.6 and SSP2-4.5 scenarios, however, intolerance to temperature extremes may mediate invasion at higher latitudes under future extreme climate scenarios, e.g., SSP5-8.5. Owing to the severe impacts its invasion causes, early warning and stringent border quarantine processes are required to guard against the introduction of C. caroliniana especially in the invasion hotspots such as, Peru, Italy, and South Korea.

4.
Biology (Basel) ; 13(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534447

ABSTRACT

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), which is native to tropical Africa, has invaded more than 100 countries and constitutes a risk to the citrus sector. Studying its potential geographical distribution (PGD) in the context of global climate change is important for prevention and control efforts worldwide. Therefore, we used the CLIMEX model to project and assess the risk of global invasion by C. capitata under current (1981-2010) and future (2040-2059) climates. In the prevailing climatic conditions, the area of PGD for C. capitata was approximately 664.8 × 105 km2 and was concentrated in South America, southern Africa, southern North America, eastern Asia, and southern Europe. Under future climate conditions, the area of PGD for C. capitata is projected to decrease to approximately 544.1 × 105 km2 and shift to higher latitudes. Cold stress was shown to affect distribution at high latitudes, and heat stress was the main factor affecting distribution under current and future climates. According to the predicted results, countries with highly suitable habitats for C. capitata that have not yet been invaded, such as China, Myanmar, and Vietnam, must strengthen quarantine measures to prevent the introduction of this pest.

5.
Insects ; 15(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535403

ABSTRACT

Tomato is the most preferred host plant for Tuta absoluta, a newly emerged devastating invasive pest in China. However, no study has evaluated the damage risk of T. absoluta on processed tomato worldwide. In the current study, the life table parameters of T. absoluta were systematically investigated on five tomato cultivars (one fresh tomato cultivar, four processed tomato cultivars) to determine their susceptibility to T. absoluta infestation. T. absoluta had a better population growth ability on the fresh tomato, "Dafen", showing shorter duration of the preadult stage, higher lifetime fecundity, and a higher intrinsic rate of increase compared to four processed tomato cultivars. Meanwhile, the life table parameters of T. absoluta among different processed tomato cultivars also showed significant differences. Th9 was the most susceptible to T. absoluta attack, while Th1902, Heinz1015, and Dimen2272 were the least suitable ones for its development and reproduction. In summary, these tomato cultivars are the most recommended for commercial tomato production to reduce the damage caused by T. absoluta and improve the integrated pest management strategy.

6.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467214

ABSTRACT

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Subject(s)
Color Vision , Moths , Animals , Opsins/genetics , Opsins/metabolism , Introduced Species , Moths/genetics , Moths/metabolism , Insecta/metabolism
8.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339028

ABSTRACT

General odorant-binding proteins (GOBPs) play a crucial role in the detection of host plant volatiles and pheromones by lepidopterans. Previous studies identified two duplications in the GOBP2 gene in Cydia pomonella. In this study, we employed qRT-PCR, protein purification, and fluorescence competitive binding assays to investigate the functions of three GOBP2 genes in C. pomonella. Our findings reveal that CpomGOBP2a and CpomGOBP2b are specifically highly expressed in antennae, while CpomGOBP2c exhibits high specific expression in wings, suggesting a potential divergence in their functions. Recombinant proteins of CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c were successfully expressed and purified, enabling an in-depth exploration of their functions. Competitive binding assays with 20 host plant volatiles and the sex pheromone (codlemone) demonstrated that CpomGOBP2a exhibits strong binding to four compounds, namely butyl octanoate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), codlemone, and geranylacetone, with corresponding dissolution constants (Ki) of 8.59993 µM, 9.14704 µM, 22.66298 µM, and 22.86923 µM, respectively. CpomGOBP2b showed specific binding to pear ester (Ki = 17.37481 µM), while CpomGOBP2c did not exhibit binding to any tested compounds. In conclusion, our results indicate a functional divergence among CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c. These findings contribute valuable insights for the development of novel prevention and control technologies and enhance our understanding of the evolutionary mechanisms of olfactory genes in C. pomonella.


Subject(s)
Dodecanol/analogs & derivatives , Moths , Receptors, Odorant , Animals , Moths/genetics , Moths/metabolism , Receptors, Odorant/metabolism , Esters , Insect Proteins/metabolism
9.
Environ Sci Pollut Res Int ; 31(9): 13575-13590, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253826

ABSTRACT

Invasive alien pests (IAPs) pose a major threat to global agriculture and food production. When multiple IAPs coexist in the same habitat and use the same resources, the economic loss to local agricultural production increases. Many species of the Diabrotica genus, such as Diabrotica barberi, Diabrotica undecimpunctata, and Diabrotica virgifera, originating from the USA and Mexico, seriously damaged maize production in North America and Europe. However, the potential geographic distributions (PGDs) and degree of ecological niche overlap among the three Diabrotica beetles remain unclear; thus, the potential coexistence zone is unknown. Based on environmental and species occurrence data, we used an ensemble model (EM) to predict the PGDs and overlapping PGD of the three Diabrotica beetles. The n-dimensional hypervolumes concept was used to explore the degree of niche overlap among the three species. The EM showed better reliability than the individual models. According to the EM results, the PGDs and overlapping PGD of the three Diabrotica beetles were mainly distributed in North America, Europe, and Asia. Under the current scenario, D. virgifera has the largest PGD ranges (1615 × 104 km2). In the future, the PGD of this species will expand further and reach a maximum under the SSP5-8.5 scenario in the 2050s (2499 × 104 km2). Diabrotica virgifera showed the highest potential for invasion under the current and future global warming scenarios. Among the three studied species, the degree of ecological niche overlap was the highest for D. undecimpunctata and D. virgifera, with the highest similarity in the PGD patterns and maximum coexistence range. Under global warming, the PGDs of the three Diabrotica beetles are expected to expand to high latitudes. Identifying the PGDs of the three Diabrotica beetles provides an important reference for quarantine authorities in countries at risk of invasion worldwide to develop specific preventive measures against pests.


Subject(s)
Coleoptera , Animals , Global Warming , Reproducibility of Results , Agriculture/methods , Ecosystem , Zea mays
10.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003538

ABSTRACT

Serine protease inhibitors (serpins) appear to be ubiquitous in almost all living organisms, with a conserved structure and varying functions. Serpins can modulate immune responses by negatively regulating serine protease activities strictly and precisely. The codling moth, Cydia pomonella (L.), a major invasive pest in China, can cause serious economic losses. However, knowledge of serpin genes in this insect remain largely unknown. In this study, we performed a systematic analysis of the serpin genes in C. pomonella, obtaining 26 serpins from the C. pomonella genome. Subsequently, their sequence features, evolutionary relationship, and expression pattern were characterized. Comparative analysis revealed the evolution of a number of serpin genes in Lepidoptera. Importantly, the evolutionary relationship and putative roles of serpin genes in C. pomonella were revealed. Additionally, selective pressure analysis found amino acid sites with strong evidence of positive selection. Interestingly, the serpin1 gene possessed at least six splicing isoforms with distinct reactive-center loops, and these isoforms were experimentally validated. Furthermore, we observed a subclade expansion of serpins, and these genes showed high expression in multiple tissues, suggesting their important roles in C. pomonella. Overall, this study will enrich our knowledge of the immunity of C. pomonella and help to elucidate the role of serpins in the immune response.


Subject(s)
Moths , Serpins , Animals , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/pharmacology , Serpins/genetics , Serpins/chemistry , Moths/genetics , Insecta , Protein Isoforms
11.
Insects ; 14(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37887791

ABSTRACT

Microorganisms can affect host reproduction, defense, and immunity through sexual or opportunistic transmission; however, there are few studies on insect reproductive organs and intestinal bacterial communities and their effects on mating. Tuta absoluta is a worldwide quarantine pest that seriously threatens the production of Solanaceae crops, and the microbial community within tomato leafminers remains unclear. In this study, 16s rRNA sequencing was used to analyze bacterial communities related to the reproductive organs and intestinal tracts of tomato leafminers (the sample accession numbers are from CNS0856533 to CNS0856577). Different bacterial communities were found in the reproductive organs and intestinal tracts of females and males. Community ecological analysis revealed three potential signs of bacterial sexual transmission: (1) Mating increased the similarity between male and female sex organs and intestinal communities. (2) The bacteria carried by mated individuals were found in unmated individuals of the opposite sex but not in unmated individuals of the same sex. (3) The bacteria carried by unmated individuals were lost after mating. In addition, the abundances of bacterial communities carried by eggs were significantly higher than those of adult worms. Our results confirm that mating leads to the transfer of bacterial communities in the reproductive organs and gut of tomato leafminers, and suggest that this community strongly influences the reproductive process.

12.
J Environ Manage ; 347: 119095, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37793290

ABSTRACT

Plant invasion is considered a high priority threat to biodiversity, ecosystems, the environment, and human health worldwide. Classical biological control (biocontrol) is a generally safer and more environmentally benign measure than chemical controls in managing invasive alien plants (IAPs). However, the impacts of climate change and the importance of climate matching in ensuring the efficiency of biocontrol candidates in controlling IAPs are likely to be underestimated. Here, based on the ensemble model and n-dimensional hypervolumes concepts, we estimated the overlapping areas between Ambrosia artemisiifolia and its two most effective natural enemies (Ophraella communa and Epiblema strenuana) under climate change in China. Moreover, we compared their ecological niches, further assessing the impact of climate change on the efficiency of two natural enemies in controlling A. artemisiifolia in China. We found that the potentially suitable areas of the two natural enemies and A. artemisiifolia were primarily influenced by temperature and human influence index variables. Under near-current climate, the overlapping area between O. communa and A. artemisiifolia was the largest, followed by E. strenuana and A. artemisiifolia, and both two natural enemies and A. artemisiifolia. The ecological niche between A. artemisiifolia and O. communa was most similar (0.64), followed by A. artemisiifolia and E. strenuana (0.55). The separate control (the niche separation areas of the two natural enemies against A. artemisiifolia) and joint-control (the niche overlap areas of the two natural enemies against A. artemisiifolia) efficiencies of the two natural enemies against A. artemisiifolia will both increase in future climates (the 2030s and 2050s) in northern and northeastern China. Our findings demonstrate a new approach to assess control efficiency and screen potential release areas of two natural enemies against A. artemisiifolia in China without the need for actual field release or experimentation. Moreover, our findings provide important clues for ensuring the classical biocontrol of IAPs worldwide.


Subject(s)
Ambrosia , Ecosystem , Humans , Plants , Biodiversity , China
13.
Genes (Basel) ; 14(10)2023 10 23.
Article in English | MEDLINE | ID: mdl-37895327

ABSTRACT

Bemisia tabaci is an important invasive pest with worldwide distribution and strong temperature tolerance. Previous studies have shown that temperature tolerance varies significantly between the different invasive populations. Several key factors involved in epigenetic regulation have been identified and verified in B. tabaci; therefore, epigenetic adaptation mechanisms may also exist. This study aimed to detect changes in the chromatin accessibility landscape and genome-wide transcriptome under different temperature stresses in B. tabaci. Assay for transposase-accessible chromatin with high-throughput sequencing and RNA-seq analyses indicated that transcriptional activity of the genes strongly correlates with chromatin accessibility. Chromatin transcription-activated gene expression regulation is dominant during high-temperature stress in B. tabaci, mainly through the transcriptional repression of genes related to low-temperature stress resistance. Furthermore, B. tabaci resists low-temperature stress by regulating enzyme activities and withstands high-temperature stress by regulating metabolism and synthesis of organic substances, both achieved by altering chromatin accessibility. In summary, this study provides a theoretical basis for exploring changes in gene expression and chromatin accessibility under different temperature stresses, offering a new approach to unravelling regulatory mechanisms underlying the onset of molecular regulation in response to various temperature stress conditions.


Subject(s)
Chromatin , Transcriptome , Transcriptome/genetics , Chromatin/genetics , Epigenesis, Genetic , Temperature , Gene Expression Regulation
14.
Sci Total Environ ; 905: 167075, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37714356

ABSTRACT

Pine wilt disease (PWD), caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), a destructive, invasive forest pathogen, poses a serious threat to global pine forest ecosystems. The global invasion of PWN has been described based on three successive phases, introduction, establishment, and dispersal. Risk assessments of the three successive PWN invasion phases can assist in targeted management efforts. Here, we present a risk assessment framework to evaluate the introduction, establishment, and dispersal risks of PWD in China using network analysis, species distribution models, and niche concepts. We found that >88 % of PWN inspection records were from the United States, South Korea, Japan, Germany, and Mexico, and 94 % of interception records were primarily from the Jiangsu, Shanghai, Shandong, Tianjin, and Zhejiang ports. Based on the nearly current climate, the areas of PWN overlap with its host Pinus species were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions. Areas of PWN overlap with its insect vector Monochamus alternatus were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions, and those of PWN overlap with the insect vector Monochamus saltuarius were primarily distributed in eastern and northeastern China. The niche between PWN and the insect vector M. alternatus was the most similar (0.68), followed by that between PWN and the insect vector M. saltuarius (0.47). Climate change will increase the suitable probabilities of PWN and its two insect vectors occurring at high latitudes, further increasing their threat to hosts in northeastern China. This risk assessment framework for PWD could be influential in preventing the entry of the PWN and mitigating their establishment and dispersal risks in China. Our study provides substantial clues for developing a framework to improve the risk assessment and surveillance of biological invasions worldwide.


Subject(s)
Coleoptera , Nematoda , Pinus , Animals , Ecosystem , Plant Diseases , China , Insect Vectors
15.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687374

ABSTRACT

Sorghum halepense competes with crops and grass species in cropland, grassland, and urban environments, increasing invasion risk. However, the invasive historical dynamics and distribution patterns of S. halepense associated with current and future climate change and land-use change (LUC) remain unknown. We first analyzed the invasive historical dynamics of S. halepense to explore its invasion status and expansion trends. We then used a species distribution model to examine how future climate change and LUC will facilitate the invasion of S. halepense. We reconstructed the countries that have historically been invaded by S. halepense based on databases with detailed records of countries and occurrences. We ran biomod2 based on climate data and land-use data at 5' resolution, assessing the significance of environmental variables and LUC. Sorghum halepense was widely distributed worldwide through grain trade and forage introduction, except in Africa. Europe and North America provided most potential global suitable habitats (PGSHs) for S. halepense in cropland, grassland, and urban environments, representing 48.69%, 20.79%, and 84.82%, respectively. The future PGSHs of S. halepense increased continuously in the Northern Hemisphere, transferring to higher latitudes. Environmental variables were more significant than LUC in predicting the PGSHs of S. halepense. Future PGSHs of S. halepense are expected to increase, exacerbating the invasion risk through agricultural LUC. These results provide a basis for the early warning and prevention of S. halepense worldwide.

16.
Biology (Basel) ; 12(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37759579

ABSTRACT

Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.

17.
Biology (Basel) ; 12(7)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37508469

ABSTRACT

The southern armyworm (Spodoptera eridania), a polyphagous crop pest native to tropical America, has been found in Africa (2016) and India (2019), causing defoliation and damage to the reproductive structures of cassava, soybean, and tomato. The damage caused by this pest to crop systems has raised concerns regarding its potential risks. Therefore, we predicted the potential geographical distribution of S. eridania under climate change conditions using 19 bioclimatic variables based on an optimized MaxEnt model. The results showed that annual precipitation (bio12), mean temperature of the warmest quarter (bio10), and precipitation of the driest month (bio14) were important bioclimatic variables influencing the potential distribution. The prediction showed that the suitable habitat area was approximately 3426.43 × 104 km2, mainly concentrated in southern North America, South America, western Europe, central Africa, southern Asia, and eastern Oceania. In response to global climate change, suitable habitats for S. eridania will expand and shift to higher latitudes in the future, especially under the SSP5-8.5 scenario. Because of the current devastating effects on crop production, countries without S. eridania invasion, such as the European Union, Southeast Asian countries, and Australia, need to strengthen phytosanitary measures at border ports to prevent the introduction of this pest.

18.
Insects ; 14(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37233053

ABSTRACT

Invasive crop pests (ICPs) are a major cause of crop losses and adversely affect global food security. Diuraphis noxia Kurdjumov is a significant ICP that feeds on the sap of crops, reducing crop yield and quality. Although estimating the geographical distribution patterns of D. noxia under climate change is critical for its management and global food security, such information remains unclear. Based on 533 global occurrence records and 9 bioclimatic variables, an optimized MaxEnt model was used to predict the potential global geographical distribution of D. noxia. The results showed that Bio1, Bio2, Bio7, and Bio12 were significant bioclimatic variables that influenced the potential geographical distribution of D. noxia. Under current climatic conditions, D. noxia was mainly distributed in west-central Asia, most of Europe, central North America, southern South America, southern and northern Africa, and southern Oceania. Under the SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 scenarios for the 2030s and 2050s, the potential suitable areas increased, and the centroid migrated to higher latitudes. The early warning of D. noxia in northwestern Asia, western Europe, and North America should be attended to further. Our results provide a theoretical basis for early monitoring and warning of D. noxia worldwide.

19.
Genes (Basel) ; 14(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37239372

ABSTRACT

Exposure to extreme temperatures can hinder the development of insects and even reduce their survival rate. However, the invasive species Bemisia tabaci exhibits an impressive response to different temperatures. This study aims to identify important transcriptional changes of B. tabaci occupying different temperature habitats by performing RNA sequencing on populations originating from three regions of China. The results showed that the gene expression of B. tabaci populations inhabiting regions with different temperatures was altered and identified 23 potential candidate genes that respond to temperature stress. Furthermore, three potential regulatory factors' (the glucuronidation pathway, alternative splicing, and changes in the chromatin structure) response to different environmental temperatures were identified. Among these, the glucuronidation pathway is a notable regulatory pathway. A total of 12 UDP-glucuronosyltransferase genes were found in the transcriptome database of B. tabaci obtained in this study. The results of DEGs analysis suggest that UDP-glucuronosyltransferases with a signal peptide may help B. tabaci resist temperature stress by sensing external signals, such as BtUGT2C1 and BtUGT2B13, which are particularly important in responding to temperature changes. These results will provide a valuable baseline for further research on the thermoregulatory mechanisms of B. tabaci that contributes to its ability to effectively colonize regions with considerable temperature differences.


Subject(s)
Gene Expression Profiling , Hemiptera , Animals , Temperature , Transcriptome/genetics , Base Sequence , Hemiptera/metabolism , Uridine Diphosphate/metabolism
20.
Open Biol ; 13(5): 220372, 2023 05.
Article in English | MEDLINE | ID: mdl-37253420

ABSTRACT

Tomato leaf miner, Tuta absoluta (Meyrick), is one of the most destructive quarantine pests globally. It has been confirmed that Krüppel-homologue 1 (kr-h1) plays a key role in the regulation of juvenile hormone (JH). However, it is unclear how kr-h1 regulates the synthesis of JH and its cascade regulation pattern in tomato leaf miner. Here, we obtained the six JH signalling genes (kr-h1, Methoprene-tolerant, Forkhead box O, Juvenile acid methyltransferase, Juvenile hormone esterase and Fatty acid synthase 2), and applied RNA interference to explore the role of kr-h1 and the seven genes (plus Vitellogenin) regulation relationship in T. absoluta. Bioinformatics analysis revealed the structural characteristics of kr-h1 protein and JH receptor Met, which contained eight C2H2 zinc finger structures and three typical domains of the bHLH-PAS family, respectively. The expression levels of Met and Vg were upregulated after RNAi of kr-h1 gene, while the gene levels of JHAMT and FAS2 were downregulated. Furthermore, topical application of JH analogue to second instar larvae could induce the expression of kr-h1 and inhibit the expression of Met. Our study reveals the mechanism by which kr-h1 regulates JH pathway genes, which could be applied to control the growth of tomato leaf miners.


Subject(s)
Juvenile Hormones , Lepidoptera , Animals , Juvenile Hormones/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Methoprene , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...