Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234010

ABSTRACT

A microcavity laser with linear polarization finds practical applications in metrology and biomedical imaging. Through a pulsed light excitation, the polarization characteristics of amplified spontaneous emissions (ASEs) from ten-period ZnO/Zn0.8Mg0.2O multiple quantum wells (MQWs) on a C-Plane sapphire substrate were investigated at room temperature. Unlike unpolarized spontaneous emissions, with 35 meV of energy differences between the C and AB bands, the ASE of MQWs revealed transverse-electric (TE) polarization under the edge emission configuration. The excited ASE from the surface normal of the polar ZnO/Zn0.8Mg0.2O MQWs with hexagonal symmetry revealed linear polarization under the pump of the stripe line through the focusing by using a cylindrical lens. The polarization direction of ASE is independent of the pump polarization but always perpendicular to the pump stripe, even if the cylindrical lens is rotated 90 degrees because of the gain-guiding effect.

2.
J Phys Condens Matter ; 31(48): 485708, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31489845

ABSTRACT

We report the influence of Mn dopant on magnetic properties of Zn0.95Mn0.05O (ZMO)/Al2O3(0 0 0 1) hetero-epitaxial systems grown by using pulsed-laser deposition. The room temperature (RT) intrinsic ferromagnetic (FM) ordering verified by superconducting quantum interference device magnetometer and x-ray magnetic circular dichroism spectrum of Mn L 2,3 edges is ascribed to the substitutional Mn atoms in the Zn site of ZnO. Mn in ZMO has a tetrahedral local symmetry instead of the octahedral symmetry of MnO, after verifying the absence of the Mn-related impurities or clusters in ZMO epitaxial film by Mn K-edge and Zn K-edge x-ray absorption spectroscopy spectrum, as well as the analysis of long-range structural ordering on Renninger scan of forbidden (0 0 0 5) reflection in x-ray diffraction, transmission electron microscopy and Raman spectrum. Comparison of x-ray absorption spectra of ZMO with those of ZnO epilayers at O K-, Zn K-, and L 3-edges indicates that the substitution of the Zn site with Mn enhances the charge-transfer (CT) transition and the presence of Zn vacancies (VZn) also dominate the photoluminescence (PL) spectrum, implying that the formation of numerous VZn defects plays an important role in activating FM interactions. The strong CT effect and the existence of high-density VZn suggest that the intrinsic RT FM ordering of insulating ZMO is a result of the formation of the bound magnetic polarons (BMPs) that interact with each other via intermediate magnetic impurities.

3.
J Synchrotron Radiat ; 26(Pt 3): 819-824, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074447

ABSTRACT

The covalent electron density, which makes Si(222) measurable, is subject to laser excitation. The three-wave Si(222)/(13 {\overline 1}) diffraction at 7.82 keV is used for phase measurements. It is found that laser excitation causes a relative phase change of around 4° in Si(222) in the first 100 ps of excitation and this is gradually recovered over several nanoseconds. This phase change is due to laser excitation of covalent electrons around the silicon atoms in the unit cell and makes the electron density deviate further from the centrosymmetric distribution.

4.
RSC Adv ; 8(15): 7980-7987, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-35542026

ABSTRACT

Saturation and beating of coherent acoustic phonon (CAP) oscillations were observed and attributed to the screening of a built-in electric field with increasing pump power using degenerate pump-probe measurements near the exciton resonance of polar ZnO/Zn0.8Mg0.2O multiple quantum wells (MQWs). After purifying the CAP signals by using an empirical mode decomposition, we found not only that the CAP amplitude follows the trend of the band gap renormalization (BGR) and shows saturation at high pump power, but also that the CAP oscillation period coincides with that of the MQWs, consistent with the XRD and TEM results. An additional low-frequency oscillation modifying the CAP signal is revealed due to the negative change in refractive index caused by BGR as the pump power increases.

5.
Opt Express ; 18(7): 7397-406, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20389762

ABSTRACT

Direct-backward third harmonic generation (DBTHG) has been regarded as negligible or even inexistent due to the large value of wave-vector mismatch. In the past, BTHG signals were often interpreted as back-reflected or back-scattered forward-THG (FTHG). In this paper, we theoretically and experimentally demonstrate that backward third harmonic waves can be directly generated, and that their magnitude can be comparable with FTHG in nanostructures. Experimental data of DBTHG from ZnO thin films, CdSe quantum dots and Fe(3)O(4) nanoparticles agree well with simulation results based on the Green's function. An integral equation was also derived for fast computation of DBTHG in nano films. Our investigation suggests that DBTHG can be a potentially powerful tool in nano-science research, especially when combined with FTHG measurements.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Optics and Photonics , Algorithms , Computer Simulation , Ferric Compounds/chemistry , Image Processing, Computer-Assisted , Models, Statistical , Normal Distribution , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL
...