Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114227, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38735044

ABSTRACT

CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.


Subject(s)
Chromatin , Hematopoietic Stem Cells , Homeodomain Proteins , Repressor Proteins , Humans , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Chromatin/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Lineage , Chromatin Assembly and Disassembly , Cell Differentiation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics
2.
Sci Rep ; 14(1): 5280, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438541

ABSTRACT

The association between craniocervical posture and craniofacial structures in the various sagittal skeletal malocclusion during different growth stages has been the focus of intense interest in fields of orthodontics, but it has not been conclusively demonstrated. Thus, this study aimed to investigate the association between craniofacial morphology and craniocervical posture in patients with sagittal skeletal malocclusion during different growth periods. A total of 150 from a large pool of cephalograms qualified for the inclusion and exclusion were evaluated and classified into three groups according to the Cervical Vertebral Maturation (CVM) by examining the morphological modifications of the second through fourth cervical vertebrae, each group consisted of 50 cephalograms. In each growth period, for the comparison of head and cervical posture differences among various skeletal classes, the radiographs were further subdivided into skeletal Class I (0° < ANB < 5°, n = 16), skeletal Class II (ANB ≥ 5°, n = 18), and skeletal Class III (0° ≤ ANB, n = 16) on the basis of their ANB angle. There was no significant difference in gender (P > 0.05). Some variables were found to be significant during pubertal growth and later in patients with sagittal skeletal malocclusion (P < 0.05). Most indicators describing craniocervical posture were largest in skeletal Class II and smallest in skeletal Class III during the peak growth periods and later. Cervical inclination variables were greater in skeletal Class III than in skeletal Class II. Variables of craniofacial morphology and craniocervical posture are more correlated during the pubertal growth period and later in patients with sagittal skeletal malocclusion. A tendency is an indication of the close interrelationship that a more extended head was in skeletal Class II while a flexed head was in skeletal Class III. Nevertheless, with the considerations of some limitations involved in this study, further longitudinal studies with large samples are required to elucidate the relationship clearly.


Subject(s)
Malocclusion , Humans , Malocclusion/diagnostic imaging , Morphogenesis , Patients , Cervical Vertebrae/diagnostic imaging , Posture
3.
Clin Cancer Res ; 30(9): 1889-1905, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38381406

ABSTRACT

PURPOSE: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN: We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS: We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS: Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Cycle , Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-myc , Receptors, Estrogen , Signal Transduction , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/genetics , Apoptosis/drug effects , Animals , Mice , Receptors, Estrogen/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Cell Cycle/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , CRISPR-Cas Systems
SELECTION OF CITATIONS
SEARCH DETAIL