Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Small ; 20(5): e2304452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752683

ABSTRACT

Carbon-based hole transport layer-free perovskite solar cells (PSCs) based on methylammonium lead triiodide (MAPbI3 ) have become one of the research focus due to low cost, easy preparation, and good optoelectronic properties. However, instability of perovskite under vacancy defects and stress-strain makes it difficult to achieve high-efficiency and stable power output. Here, a soft-structured long-chain 2D pentanamine iodide (abbreviated as "PI") is used to improve perovskite quality and interfacial mechanical compatibility. PI containing CH3 (CH2 )4 NH3 + and I- ions not only passivate defects at grain boundaries, but also effectively alleviate residual stress during high temperature annealing via decreasing Young's modulus of perovskite film. Most importantly, PI effectively increases matching degree of Young's modulus between MAPbI3 (47.1 GPa) and carbon (6.7 GPa), and strengthens adhesive fracture energy (Gc ) between perovskite and carbon, which is helpful for outward release of nascent interfacial stress generated under service conditions. Consequently, photoelectric conversion efficiency (PCE) of optimal device is enhanced from 10.85% to 13.76% and operational stability is also significantly improved. 83.1% output is maintained after aging for 720 h at room temperature and 25-60% relative humidity (RH). This strategy of regulation from chemistry and physics provides a strategy for efficient and stable carbon-based PSCs.

2.
Neuropharmacology ; 232: 109525, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37004752

ABSTRACT

Since Alzheimer's disease (AD) is a complex and multifactorial neuropathology, the discovery of multi-targeted inhibitors has gradually demonstrated greater therapeutic potential. Neurofibrillary tangles (NFTs), the main neuropathologic hallmarks of AD, are mainly associated with hyperphosphorylation of the microtubule-associated protein Tau. The overexpression of GSK3ß and DYRK1A has been recognized as an important contributor to hyperphosphorylation of Tau, leading to the strategy of using dual-targets inhibitors for the treatment of this disorder. ZDWX-12 and ZDWX-25, as harmine derivatives, were found good inhibition on dual targets in our previous study. Here, we firstly evaluated the inhibition effect of Tau hyperphosphorylation using two compounds by HEK293-Tau P301L cell-based model and okadaic acid (OKA)-induced mouse model. We found that ZDWX-25 was more effective than ZDWX-12. Then, based on comprehensively investigations on ZDWX-25 in vitro and in vivo, 1) the capability of ZDWX-25 to show a reduction in phosphorylation of multiple Tau epitopes in OKA-induced neurodegeneration cell models, and 2) the effect of reduction on NFTs by 3xTg-AD mouse model under administration of ZDWX-25, an orally bioavailable, brain-penetrant dual-targets inhibitor with low toxicity. Our data highlight that ZDWX-25 is a promising drug for treating AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , tau Proteins/metabolism , Phosphorylation , Okadaic Acid/metabolism , Okadaic Acid/pharmacology , Okadaic Acid/therapeutic use , Disease Models, Animal
3.
Phytomedicine ; 104: 154289, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785561

ABSTRACT

BACKGROUND: Hypothermia is a complex pathophysiological response that can be life-threatening in low-temperature environment because of impaired thermoregulation. However, there is currently no clinically effective drugs that can prevent or treat this disease. Brown adipose tissue (BAT) activation or browning of white adipose tissue (WAT) is a promising therapeutic strategy to prevent or treat hypothermia. Atractylodes macrocephala Koidz extract (AE) and its active compound Atractylenolide III (AIII) has been reported to regulate glycolipid metabolism, which might be relevant to BAT activation. However, the thermogenic effect and mechanism of AE and AIII on adipose tissues have not been explored yet. Therefore, this study firstly investigated the role of AE and AIII on hypothermia by promoting heat production of BAT and WAT. PURPOSE: To explore the anti-cold effect of AE and AIII in cold exposure model and explore their biological function and mechanism underlying thermogenesis. METHODS: The effect of thermogenesis and anti-hypothermia of AE and AIII on C57BL/6J mice were evaluated with several experiment in cold environment, such as toxicity test, cold exposure test, metabolism estimation, histology and immunohistochemistry, and protein expression. Additionally, BAT, inguinal WAT (iWAT) and brown adipocytes were utilized to explore the mechanism of AE and AIII on thermogenesis in vivo and in vitro. Finally, SIRT1 agonist and inhibitor in brown adipocytes to verify that AIII activated BAT through SIRT1/PGC-1α pathway. RESULTS: Both AE and AⅢ could significantly maintain the core body temperature and body surface temperature of mice during cold exposure. Besides, AE and AⅢ could significantly improve the capacity of total antioxidant and glucose, lipid metabolism of mice. In addition, AE and AIII reduced mitochondrial membrane potential and ATP content both in BAT and brown adipocytes, and decreased the size of lipid droplets. Moreover, AE and AⅢ promoted the expression of proteins related to heat production in BAT and iWAT. And AIII might activate BAT via SIRT1/PGC-1α pathway. CONCLUSION: AE and AⅢ were potential candidate drugs that treated hypothermia by improving the heat production capacity of the mice. Mechanistically, they may activate SIRT1/PGC-1α pathway, thus enhancing the function of BAT, and promoting the browning of iWAT, to act as anti-hypothermia candidate medicine.


Subject(s)
Atractylodes , Sirtuin 1 , Adipose Tissue, White , Animals , Lactones , Mice , Mice, Inbred C57BL , Sesquiterpenes , Signal Transduction , Sirtuin 1/metabolism , Transcription Factors/metabolism
4.
ACS Appl Mater Interfaces ; 14(17): 20257-20267, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35451814

ABSTRACT

Thermodynamically induced tensile stress in the perovskite film will lead to the formation of atomic vacancies, seriously destroying the photovoltaic efficiency stability of the perovskite solar cells (PSCs). Among them, cations and halide anions vacancies are unavoidable; these point vacancies are considered to be a major source of the ionic migration and perovskite degradation at the crystal boundary and surface of the perovskite films. Here, we use choline bromide to modify the perovskite film by occupying the atomic defects in the CsPbBr3 perovskite film. The results show that the zwitterion quaternary ammonium ions and bromide ions in choline bromide can simultaneously occupy the Cs+ cation and Br- anions vacancies in the perovskite film by the ionic bonding effect, for which the defect-state density on the surface of the perovskite film can be significantly reduced, leading to the effective enhancement of carrier lifetime. In addition, the residual stress at the crystal boundary can be effectively reduced by lowering the Young's modulus in the CsPbBr3 perovskite film. As a result, the optimized device achieves a photoelectric conversion efficiency (PCE) of 9.06% with an increase of 41.1% compared to the control device with a PCE of 6.42%. Most importantly, the newborn thermal stress due to thermal expansion during heat working conditions can be transferred from the polycrystalline perovskite to the carbon layer by the matched Young's modulus, thus resulting in improved stability perovskite film under environmental conditions. The work provides new insights for preparing high-quality perovskite films with low defect-state density and residual stress.

5.
Oxid Med Cell Longev ; 2022: 6232902, 2022.
Article in English | MEDLINE | ID: mdl-35265262

ABSTRACT

Mitochondria can supply adenosine triphosphate (ATP) to the tissue, which can regulate metabolism during the pathologic process and is also involved in the pathophysiology of neuronal injury after stroke. Recent studies have suggested that selective autophagy could play important roles in the pathophysiological process of stroke, especially mitophagy. It is usually mediated by the PINK1/Parkin-independent pathway or PINK1/Parkin-dependent pathway. Moreover, mitophagy may be a potential target in the therapy of stroke because the control of mitophagy is neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize recent researches in mitophagy, introduce the role of mitophagy in the pathogenesis of stroke, then highlight the strategies targeting mitophagy in the treatment of stroke, and finally propose several issues in the treatment of stroke by targeting mitophagy.


Subject(s)
Mitophagy/genetics , Stroke/pathology , Humans
6.
Nanoscale ; 13(36): 15431-15444, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34505618

ABSTRACT

Three-dimensional (3D) hybrid networks consisting of reduced graphene oxide (rGO) sheets interconnected by Co3O4 nanowires (rGO/Co3O4), followed by the decoration of Fe2O3 nanospheres (NSs) (rGO/Co3O4@Fe2O3), were demonstrated by a facile hydrothermal method, with which the rGO/Co3O4 networks acted as nucleation sites for the in situ synthesis of Fe2O3 NSs. The intimate contacts between rGO, Co3O4 NWs and Fe2O3 NSs, which result in an excellent conductive behavior, provide a unique structure with huge potential for electrochemical property promoted electrochemical supercapacitors. The rGO/Co3O4@Fe2O3 hybrid networks as electrodes exhibit a high capacitance of 784 F g-1 at 1 A g-1 with 83% retention of the initial capacitance as the current density increases from 1 to 10 A g-1, which is explained by the graphene-based interconnected structure owing to the advantages of accommodating the volume expansion between Co3O4 NWs and Fe2O3 NSs. The supercapacitor was assembled by applying a nickel aluminum layered double hydroxide (NiAl-LDH) structure and rGO/Co3O4@Fe2O3 as the electrode materials and yields an energy density of 70.78 W h kg-1 at a power density of 0.29 kW kg-1. The energy density can maintain 24.24 W h kg-1 with 9.94 kW kg-1.

7.
J Immunother ; 44(9): 371-375, 2021.
Article in English | MEDLINE | ID: mdl-34456293

ABSTRACT

Despite that immune checkpoint inhibitors (ICIs) had tremendous improved the survival of multiple solid tumors, only a limited proportion of patients are responsive to ICIs. Therefore, effective variables are urgently needed to predict the probability of response to ICIs. Systematic searches were conducted from inception up to May, 2020. Prospective or retrospective studies of ICIs that investigated the association between body mass index (BMI) and survival outcomes, including overall survival (OS) and/or progression-free survival (PFS), were selected. The association between each BMI category and survival outcomes was calculated using Cox proportional hazard regression models and quantified as hazard ratio (HR) with corresponding 95% confidence interval. Seven clinical studies involving data from 3768 individual patients were included. The median OS was 15.5 months (95% confidence interval: 14.7-16.2 mo) and the median PFS was 5.7 months (5.2-6.3 mo). The median OS was significantly longer in overweight/obese patients than in nonoverweight patients (20.7 vs. 11.3 mo; P<0.001). The difference in OS between overweight and obese patients was not statistically significant (HR: 1.14, P=0.098). Similar results were observed for PFS outcomes. Subgroup analysis demonstrated improved OS in overweight/obese patients with nonsmall-cell lung cancer (HR: 0.81, P=0.002), melanoma (HR: 0.66, P<0.001), renal cell carcinoma (HR: 0.53, P<0.001), and multiple cancer type (HR: 0.34, P<0.001), with parallel results noted regarding PFS outcomes. Results of the present study suggested that BMI may be a satisfactory prognostic factor for patients treated with ICIs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Kidney Neoplasms , Lung Neoplasms , Body Mass Index , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Prospective Studies , Retrospective Studies
8.
J Ethnopharmacol ; 279: 114378, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34192599

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Rougui) has character of xin、gan、wen, belongs to Jing of heart、lung、bladder, and has the effect of dispersing cold and relieving pain. It is widely used to resolve the exterior and dissipate cold in Treatise on Febrile Diseases (Shang Han Lun), such as Chaihu Guizhi Ganjiang Tang and Guizhi Renshen Tang. Both these two prescriptions contain Cinnamomum cassia Presl and Zingiber officinale Rosc (Ganjiang). Rougui-Ganjiang herb-pair (RGHP) can warm viscera and remove cold, which is widely used in Shang Han Lun. And in modern times, recent studies have showed that cinnamon and ginger also have the effect of thermogenesis and regulating the body temperature, respectively. AIM OF THE STUDY: To maintain the body thermal homeostasis and prevent cold invasion of main organs, in this study, we assessed the underlying physiological changes induced by RGHP in mice exposed to -20 °C and explored the mechanisms for the thermogenic actions of RGHP in brown adipose tissue (BAT) by network pharmacology and molecular docking. MATERIALS AND METHODS: Male Kunming (KM) mice were fed normal diet with orally administration of distilled water or ethanol RGHP extract (three doses: 375,750 and 1500 mg/kg) for 21 days, once per day and then exposed to -20 °C for 2 h. The core temperature, activity ability and the degree of frostbite in mice, morphological and ATP content of adipocytes were measured. In addition, the network pharmacology was employed to predict the targets of RGHP' s thermogenesis effect on BAT. Pathway analysis and biological process with key genes was carried out through KEGG and GO analysis, respectively. Furthermore, the core ingredients and targets obtained by network pharmacology were verified by molecular docking and Western blot assays. RESULTS: RGHP can significantly increase the core body temperature, reduce the degree of frostbite and enhance the activity ability of mice after cold exposure. Meanwhile, it can also improve the lipid morphology and decrease ATP production in BAT. A network pharmacology-based analysis identified 246 ingredients from RGHP (two herbs), which related to 222 target genes. There were 8 common genes between 222 compounds target genes and 62 thermogenesis associated target genes, which linked to 49 potential compounds. There are 24 ingredients which degree are greater than the average. Among them, we found that oleic acid, EIC, 6-gingerol, eugenol, isohomogenol and sitogluside could be detected in mice plasma. The cAMP-PPAR signaling pathway was enriched for thermogenesis after KEGG analysis with 8 genes. Molecular docking analysis and Western blot assay further confirmed that oleic acid, 6-gingerol, eugenol and isohomogenol were potential active ingredients for RGHP's heat production effect. And UCP1, PGC-1α, PPARα and PPARγ are key thermogenesis proteins. CONCLUSIONS: RGHP treatment can significantly maintain the rectal temperature of mice by enhancing the BAT heat production. RGHP exhibited the heat production effect, which might be mainly attributed to increasing thermogenesis through the cAMP-PPAR signaling pathway in cold exposure mice. Oleic acid, 6-gingerol, eugenol and isohomogenol might be considered the potential therapeutic ingredients which affect the key targets of thermogenesis effect.


Subject(s)
Adipose Tissue, Brown/drug effects , Body Temperature Regulation/drug effects , Cinnamomum aromaticum/chemistry , Drugs, Chinese Herbal/pharmacology , Network Pharmacology/methods , Administration, Oral , Animals , Cell Survival/drug effects , Cold Temperature , Drugs, Chinese Herbal/administration & dosage , Energy Metabolism/drug effects , Male , Mice , Molecular Docking Simulation , Random Allocation , Thermogenesis
9.
Diving Hyperb Med ; 51(2): 134-139, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34157727

ABSTRACT

INTRODUCTION: Exposure to very high oxygen partial pressure may cause central nervous system oxygen toxicity (CNS-OT). The role of necroptosis in the pathogenesis of CNS-OT is still unclear. METHODS: In experiment one, male C57BL/6 mice in the oxygen toxicity (OT) group (n = 5) and necrostatin-1 (Nec-1; a necroptosis inhibitor) (1.5 mg·kg-1, intraperitoneal) group (n = 5) were exposed to pure oxygen at 600 kPa, and the latency to tonic-clonic seizure was recorded. In experiment two, mice were divided into three groups: control group (n = 11), OT group (n = 12) and Nec-1 group (n = 12). Nec-1 was intraperitoneally administered 30 min before oxygen exposure. Mice in the OT group and Nec-1 group were exposed to pure oxygen at 400 kPa for 30 min, and then sacrificed; the brain was harvested for the assessment of inflammation, oxidative stress and necroptosis. RESULTS: Experiment one. Nec-1 pre-treatment significantly prolonged the latency to seizure (245 [SD 18] seconds in the OT group versus 336 (34) seconds in the Nec-1 group). Experiment two. Nec-1 pre-treatment markedly reduced inflammatory cytokines and inhibited cerebral necroptosis, but failed to significantly suppress cerebral oxidative stress. CONCLUSIONS: These findings indicate necroptosis is involved in the pathogenesis of CNS-OT, and inhibition of necroptosis may prolong seizure latency, but the specific mechanisms should be investigated further.


Subject(s)
Oxygen , Seizures , Animals , Apoptosis , Imidazoles , Indoles , Male , Mice , Mice, Inbred C57BL , Partial Pressure , Seizures/chemically induced
10.
Undersea Hyperb Med ; 48(1): 13-23, 2021.
Article in English | MEDLINE | ID: mdl-33648029

ABSTRACT

Neuropathic pain (NPP) refers to the pain caused by primary or secondary injury or dysfunction of the peripheral or central nervous system, and usually requires multidisciplinary treatment. However, most pharmacological and non-pharmacological interventions can only temporarily and/or moderately improve pain-related symptoms, and they often produce unbearable adverse reactions or cause drug resistance. Hyperbaric oxygen (HBO2) therapy has been widely used in the clinical treatment of some diseases due to its advantages of safety, few side effects, no resistance, and non-invasiveness. In recent years, increasing numbers of basic and clinical studies have been conducted to investigate the efficacy and mechanism of HBO2 in the treatment of NPP, and great progress has been made in this field. In this paper, we briefly introduce the pathogenesis of NPP and therapeutic effects of HBO2 and summarize the mechanisms underlying the effects of HBO2 in treating NPP, which may provide reference for the clinical treatment of pain with HBO2.


Subject(s)
Hyperbaric Oxygenation/trends , Neuralgia/therapy , Animals , Apoptosis/physiology , Atmospheric Pressure , Disease Models, Animal , GABAergic Neurons/physiology , Humans , Hyperbaric Oxygenation/methods , Mice , Migraine Disorders/therapy , Neuralgia/etiology , Neuritis/complications , Nitric Oxide/physiology , Oxidative Stress/physiology , Randomized Controlled Trials as Topic , Rats , Receptors, Opioid/physiology
11.
Nanoscale ; 12(38): 19644-19654, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32966500

ABSTRACT

In this study, we, for the first time, demonstrate a general solid-phase pyrolysis method to synthesize hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheets, namely M-CNNs, as a highly efficient oxygen electrocatalyst for rechargeable Zn-air batteries (ZABs). The ratios between metallic acetylacetonates and the g-C3N4 precursor can be controlled where Fe-CNNs-0.7, Ni-CNNs-0.7 and Co-NNs-0.7 composites have been optimized to exhibit superior ORR/OER bifunctional electrocatalytic activities. Specifically, Co-CNNs-0.7 exhibited not only a comparable half-wave potential (0.803 V vs. RHE) to that of the commercial Pt/C catalyst (0.832 V) with a larger current density for the ORR but also a lower overpotential (440 mV) toward the OER compared with the commercial IrO2 catalyst (460 mV), revealing impressive application in rechargeable ZABs. As a result, ZABs using Co-CNNs-0.7 as the cathode exhibited an excellent peak power density of 85.3 mW cm-2 with a specific capacity of 675.7 mA h g-1 and remarkable cycling stability of 1000 cycles, outperforming the commercially available Pt/C + IrO2 catalysts. This study highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal-air cathode materials.

12.
J Zhejiang Univ Sci B ; 21(8): 646-656, 2020.
Article in English | MEDLINE | ID: mdl-32748580

ABSTRACT

This study aimed to establish an animal model of decompression-induced lung injury (DILI) secondary to repetitive diving in mice and explore the role of macrophages in DILI and the protective effects of high-concentration hydrogen (HCH) on DILI. Mice were divided into three groups: control group, DILI group, and HCH group. Mice were exposed to hyperbaric air at 600 kPa for 60 min once daily for consecutive 3 d and then experienced decompression. In HCH group, mice were administered with HCH (66.7% hydrogen and 33.3% oxygen) for 60 min after each hyperbaric exposure. Pulmonary function tests were done 6 h after decompression; the blood was harvested for cell counting; the lung tissues were harvested for the detection of inflammatory cytokines, hematoxylin and eosin (HE) staining, and immunohistochemistry; western blotting and polymerase chain reaction (PCR) were done for the detection of markers for M1 and M2 macrophages. Our results showed that bubbles formed after decompression and repeated hyperbaric exposures significantly reduced the total lung volume and functional residual volume. Moreover, repetitive diving dramatically increased proinflammatory factors and increased the markers of both M1 and M2 macrophages. HCH inhalation improved lung function to a certain extent, and significantly reduced the pro-inflammatory factors. These effects were related to the reduction of M1 macrophages as well as the increase in M2 macrophages. This study indicates that repetitive diving damages lung function and activates lung macrophages, resulting in lung inflammation. HCH inhalation after each diving may be a promising strategy for the prevention of DILI.


Subject(s)
Diving/adverse effects , Lung Injury/etiology , Lung/physiology , Macrophages/physiology , Animals , Cell Polarity , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Pulmonary Edema/etiology
13.
Sci Rep ; 10(1): 9157, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32514011

ABSTRACT

The high cost and platinum dissolution issues of counter electrodes (CEs) are two core problems for the development of dye-sensitized solar cells (DSSCs). In this work, different CEs based on binary alloy Ru81.09Co18.91, Ru80.55Se19.45 and Co20.85Se79.15 nanostructures for DSSCs were successfully synthesized and investigated by a facile and environmentally friendly approach. Here, we found that the Co20.85Se79.15 alloy CE-based device yields the higher photoelectric conversion efficiency of 7.08% compared with that (5.80%) of the DSSC using a pure Pt CE because of the larger number of active sites with improved charge transferability and reduced interface resistance by matching work function with the I3‒/I‒ redox electrolyte. The inexpensive synthesis method, cost-effectiveness and superior catalytic activity of the Co20.85Se79.15 alloy may open up a new avenue for the development of CEs for DSSCs in the near future.

14.
ACS Nano ; 14(7): 8539-8550, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32520534

ABSTRACT

The rechargeable aluminum-ion battery (AIB) is a promising candidate for next-generation high-performance batteries, but its cathode materials require more development to improve their capacity and cycling life. We have demonstrated the growth of MoSe2 three-dimensional helical nanorod arrays on a polyimide substrate by the deposition of Mo helical nanorod arrays followed by a low-temperature plasma-assisted selenization process to form novel cathodes for AIBs. The binder-free 3D MoSe2-based AIB shows a high specific capacity of 753 mAh g-1 at a current density of 0.3 A g-1 and can maintain a high specific capacity of 138 mAh g-1 at a current density of 5 A g-1 with 10 000 cycles. Ex situ Raman, XPS, and TEM characterization results of the electrodes under different states confirm the reversible alloying conversion and intercalation hybrid mechanism during the discharge and charge cycles. All possible chemical reactions were proposed by the electrochemical curves and characterization. Further exploratory works on interdigital flexible AIBs and stretchable AIBs were demonstrated, exhibiting a steady output capacity under different bending and stretching states. This method provides a controllable strategy for selenide nanostructure-based AIBs for use in future applications of energy-storage devices in flexible and wearable electronics.

15.
Undersea Hyperb Med ; 47(2): 189-196, 2020.
Article in English | MEDLINE | ID: mdl-32574434

ABSTRACT

Roflumilast is an inhibitor of phosphodiesterase-4 (PDE4) and can suppress the hydrolysis of cAMP in inflammatory cells, conferring anti-inflammatory effects. This study aimed to investigate the protective effects of roflumilast on hyperoxia-induced acute lung injury (HALI) in a rat model. Male Sprague-Dawley rats were randomly assigned into: control group; HALI group; 2.5 mg/kg roflumilast group; and 5 mg/kg roflumilast group. Rats were pressurized to 250 kPa with pure oxygen to induce lung injury. In the roflumilast groups, rats were orally administered with roflumilast at 2.5 or 5 mg/kg once before hyperoxia exposure and once daily for two days after exposure. Rats were sacrificed 72 hours after hyperoxia exposure. The lung tissues were collected for the detection of lung water content, inflammatory cytokines and NF-κB/p-NF-κB protein expression, and the bronchoalveolar lavage fluid was harvested for the measurement of protein concentration and lactate dehydrogenase activity. Results showed roflumilast at different doses could significantly reduce lung edema, improve lung pathology and reduce the expression of inflammatory cytokines in the lung. The protective effects seemed to be related to the dose of roflumilast. Our study indicates roflumilast has the potential as a medication for the treatment of HALI.


Subject(s)
Aminopyridines/therapeutic use , Benzamides/therapeutic use , Hyperoxia/complications , Lung Injury/prevention & control , Phosphodiesterase 4 Inhibitors/therapeutic use , Proteins/analysis , Aminopyridines/administration & dosage , Animals , Benzamides/administration & dosage , Body Water , Bronchoalveolar Lavage Fluid/chemistry , Cyclopropanes/administration & dosage , Cyclopropanes/therapeutic use , Interleukin-10/analysis , Interleukin-1beta/analysis , Interleukin-6/analysis , L-Lactate Dehydrogenase/analysis , Lung/chemistry , Lung/pathology , Lung Injury/etiology , Lung Injury/pathology , Male , NF-kappa B/analysis , Phosphodiesterase 4 Inhibitors/administration & dosage , Pulmonary Edema/prevention & control , Random Allocation , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/analysis
16.
Phytochemistry ; 177: 112432, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32562918

ABSTRACT

Five undescribed caffeoylquinic acid derivatives (CQAs), along with fifteen known CQAs, were isolated from the roots of Arctium lappa L.(burdock). The chemical structures of compounds were determined using extensive spectroscopic analyses, including UV, IR, NMR and MS. Further in vitro bioactive investigation demonstrated the neuroprotective effects of these compounds against the neurotoxicity of hydrogen peroxide (H2O2) and N-methyl-D-aspartate (NMDA). 1,3,5-tri-O-caffeoylquinic acid and 1,4,5-tri-O-caffeoylquinic acid significantly reduced H2O2-induced human neuroblastoma SH-SY5Y cell death with concentration for 50% of maximal effect (EC50) values of 17.3 and 19.3 µM. Meanwhile, 3,5-di-O-caffeoyl-1-O-maloylquinic acid displayed protective effect against NMDA-induced cell injury with EC50 values of 18.4 µM. Overall, the more caffeoyl, the better the antioxidant activity, while the maloyl-containing compounds had better anti-NMDA activity.


Subject(s)
Arctium , Neuroprotective Agents , Humans , Hydrogen Peroxide , Plant Roots , Quinic Acid/analogs & derivatives
17.
Med Gas Res ; 10(1): 30-36, 2020.
Article in English | MEDLINE | ID: mdl-32189667

ABSTRACT

Carbon monoxide (CO) has been the leading cause of poisoning mortality in many countries and hyperbaric oxygen (HBO) is a widely accepted treatment for CO poisoning. However, some patients with CO poisoning will still develop neurocognitive sequelae regardless of HBO therapy, which can persist since CO poisoning or be present days to weeks after a recovery from CO poisoning. HBO has been used in the prevention and treatment of neurocognitive sequelae after CO poisoning, and some mechanisms are also proposed for the potential neuroprotective effects of HBO on the neurocognitive impairment after CO poisoning, but there is still controversy on the effectiveness of HBO on neurocognitive sequelae after CO poisoning. In this paper, we briefly introduce the neurocognitive sequelae after CO poisoning, summarize the potential predictive factors of neurocognitive sequelae, and discuss the use of HBO in the treatment and prevention of neurocognitive sequelae after CO poisoning.


Subject(s)
Carbon Monoxide Poisoning/complications , Carbon Monoxide Poisoning/therapy , Hyperbaric Oxygenation/adverse effects , Neurocognitive Disorders/complications , Humans
18.
J Ethnopharmacol ; 248: 112271, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31586693

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gui Zhi Tang, a well-known Chinese herbal formula recorded in the Eastern Han Dynasty, has been widely used to treat exogenous cold for thousands of years. Recent studies have shown that Gui Zhi Tang has the effect of regulating the body temperature. Because of its effect on heat production, protecting vital organs of the body and avoiding damage from the cold environment, Jiang Gui Fang (JG) was obtained from the Department of Traditional Chinese Medicine at the General Hospital of Northern Theatre Command where it has been used clinically for many years and has exhibited favourable efficacy. Based on research on Gui Zhi Tang, the principles of traditional Chinese medicine and survey of a large number of studies, this empirical formula was developed. The composition of JG included Dried ginger, Cassia twig, and Liquorice in Gui Zhi Tang, which play a major role in the treatment of exogenous cold, and combined these components with other Chinese medicines, such as Pueraria, Spatholobus, Acanthopanacis cortex, Evodiae fructus, and Codonopsis pilosula. AIM OF THE STUDY: To promote the core body temperature and prevent invasion of the major organs from the cold environment, we studied the effect of JG on the core body temperature of mice and then explored its regulation of interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and the possible mechanism. Finally, we determined the phytochemical composition of JG that plays a role in heat production. MATERIALS AND METHODS: In vivo study, we performed a 4-week treatment of JG in acute cold environment at -20 °C and chronic cold exposure at 4 °C. The core temperature, adipose tissue weight, serum parameters, and morphological observation of adipocytes, liver and kidney were measured. Then we investigated the expression levels of adipogenic factors, thermogenic factors and lipoprotein. In vitro, we determined the lipid droplet content, ATP content, and the maximum oxygen consumption of mitochondria. RESULTS: JG treatment promoted core temperature, inhibited eWAT weight, protected liver, and reduced glucose and lipids in Kunming (KM) mice. JG also increased the expression of BAT-associated thermogenic factors, including uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α). The levels of the lipogenic factor peroxisome proliferate-activator receptor gamma (PPARγ) and the lipolytic protein hormone-sensitive triglyceride lipase (HSL) in eWAT were elevated. The results of H&E and immunohistochemistry showed that JG significantly reduced the size of iBAT and eWAT and increased the content of UCP1. In vitro, JG reduced the content of lipid droplets and ATP in brown fat cells. The maximum oxygen consumption capacity of mitochondria and the expression levels of UCP1, PGC1α and silent mating type information regulation 2 homologue 1 (SIRT1) were enhanced after JG treatment. CONCLUSIONS: In vivo and in vitro studies, the results demonstrated that JG obviously increased the core temperature of mice by activating iBAT and inducing eWAT browning, which proved the mechanism is closely related to the PPARγ/SIRT1- PGC1α pathway. In this paper, we will provide a reference for further study of iBAT activation and eWAT browning.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Body Temperature/drug effects , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Male , Mice
19.
J Ethnopharmacol ; 249: 112433, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31783135

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a frequently occurring disease of the elderly, and "deficiency" is the root of AD. Most famous experts of traditional Chinese medicine believe that the disease is based on deficiency, and the deficiency of kidney essence is the basis. Notopterygium incisum (Qiang huo) is beneficial to bladder, liver, and kidneys. It is used to treat liver and kidney deficiency, language difficulties, and mental coma. Qiang huo yu feng tang has been used to treat liver and kidney deficiency, unclear language and mental paralysis in many traditional Chinese medicine books and records. In modern times, it has been used to treat AD and exhibited favourable efficacy. AIM OF THE STUDY: This study attempts to investigate the effects of furocoumarins from Notopterygium incisum (NRE) on the Aß cascade, tau pathology and inflammatory pathology of AD. MATERIALS AND METHODS: In this study, we reported a detailed protocol for stabilizing HEK APPswe293T cells with lentivirus for the first time. This cell line can secrete high concentration of Aß. In addition, we treated N2a cells with AKT/PKC specific inhibitors (wortmannin/GF-109203X) and established a tau pathological cell model (AKT/PKC N2a) by activating GSK3ß and triggering hyperphosphorylation of tau. The Aß levels and the expression of phosphorylated tau were detected by ELISA and Western blot. The cognitive ability of NRE on APP/PS1 mice was detected using a Morris water maze (MWM) assay and Aß contents were also evaluated. RESULTS: In HEK APPswe293T cells, NRE (10, 20, 40 µg/mL) significantly inhibited the secretion and production of Aß in dose dependent manner. In addition, NRE also suppressed the expression of phosphorylated tau in wortmannin/GF-109203X treated N2a cells. Furthermore, NRE ameliorated the cognitive impairment of APP/PS1 mice, and the contents of Aß, IL-1ß and TNF-α were significantly depressed in hippocampus and cortex. CONCLUSION: In conclusion, our results demonstrated that NRE has a potential anti-AD effect via the inhibition of the Aß cascade, tau pathology and neuroinflammation in vitro and in vivo.


Subject(s)
Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Medicine, Chinese Traditional/methods , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Apiaceae/chemistry , Behavior Observation Techniques , Cognition/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , HEK293 Cells , Hippocampus/immunology , Hippocampus/pathology , Humans , Learning/drug effects , Male , Mice , Mice, Transgenic , Phosphorylation/drug effects , tau Proteins/metabolism
20.
Med Gas Res ; 9(3): 127-132, 2019.
Article in English | MEDLINE | ID: mdl-31552875

ABSTRACT

Microglia participate in bi-directional control of brain repair after stroke. Previous studies have demonstrated that hydrogen protects brain after ischemia/reperfusion (I/R) by inhibiting inflammation, but the specific mechanism of anti-inflammatory effect of hydrogen is poorly understood. The goal of our study is to investigate whether inhalation of high concentration hydrogen (HCH) is able to attenuate I/R-induced microglia activation. Eighty C57B/L male mice were divided into four groups: sham, I/R, I/R + HCH and I/R + N2/O2 groups. Assessment of animals happened in "blind" matter. I/R was induced by occlusion of middle cerebral artery for one hour). After one hour, filament was withdrawn, which induced reperfusion. Hydrogen treated I/R animals inhaled mix of 66.7% H2 balanced with O2 for 90 minutes, starting immediately after initiation of reperfusion. Control animals (N2/O2) inhaled mix in which hydrogen was replaced with N2 for the same time (90 minutes). The brain injury, such as brain infarction and development of brain edema, as well as neurobehavioral deficits were determined 23 hours after reperfusion. Effect of HCH on microglia activation in the ischemic penumbra was investigated by immunostaining also 23 hours after reperfusion. mRNA expression of inflammation related genes was detected by PCR. Our results showed that HCH attenuated brain injury and consequently reduced neurological dysfunction after I/R. Furthermore, we demonstrated that HCH directed microglia polarization towards anti-inflammatory M2 polarization. This study indicates hydrogen may exert neuroprotective effects by inhibiting the microglial activation and regulating microglial polarization. This study was conducted in agreement with the Animal Care and Use Committee (IACUC) and Institutional Animal Care guidelines regulation (Shanghai Jiao Tong University, China (approval No. A2015-011) in November 2015.


Subject(s)
Hydrogen/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Microglia/drug effects , Microglia/pathology , Phenotype , Animals , Brain/drug effects , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Hydrogen/therapeutic use , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...