Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 948
Filter
1.
Front Genet ; 15: 1388015, 2024.
Article in English | MEDLINE | ID: mdl-38737125

ABSTRACT

LncRNAs are an essential type of non-coding RNAs, which have been reported to be involved in various human pathological conditions. Increasing evidence suggests that drugs can regulate lncRNAs expression, which makes it possible to develop lncRNAs as therapeutic targets. Thus, developing in-silico methods to predict lncRNA-drug associations (LDAs) is a critical step for developing lncRNA-based therapies. In this study, we predict LDAs by using graph convolutional networks (GCN) and graph attention networks (GAT) based on lncRNA and drug similarity networks. Results show that our proposed method achieves good performance (average AUCs > 0.92) on five datasets. In addition, case studies and KEGG functional enrichment analysis further prove that the model can effectively identify novel LDAs. On the whole, this study provides a deep learning-based framework for predicting novel LDAs, which will accelerate the lncRNA-targeted drug development process.

2.
Digit Health ; 10: 20552076241255654, 2024.
Article in English | MEDLINE | ID: mdl-38766359

ABSTRACT

Objective: This study aimed to develop an individual WeChat Mini Program to provide pharmaceutical care to better manage cancer pain patients and to evaluate its feasibility and the differences in analgesic efficacy, medication adherence and safety versus conventional pharmacy interventions. Methods: In this parallel randomized clinical trial, 42 cancer pain patients were equally allocated into the experimental group and the control group. The experimental group received individualized pharmaceutical care based on the "Yao Nin You Wo" WeChat Mini Program, while the control group received conventional care during the 4-week period. Main outcomes contained pain scores, medication adherence, incidences and relief rates of breakthrough pain, and incidences of adverse events. Relief rates of pain were also calculated according to pain scores. Results: At the beginning of intervention, none of the pain scores and medication adherence showed relevant differences between the two groups (all P > .05). After intervention, the experimental group had significantly lower pain scores compared to the control group (P = .003). Breakthrough pain of both groups was alleviate; not only the incidence of breakthrough pain considerably was lower at 4 weeks than at baseline, but the relief rate of breakthrough in the experimental group was higher than that in the control group. Compared with the control group, the medication adherence rate of the experimental group was significantly improved (P = .02). Types of adverse events that happened in experimental and groups were similar, but the total incidence of adverse events in the experimental group was lower than that in the control group. Conclusions: WeChat Mini Program is a useful and facilitative tool with the potential to improve cancer pain self-management ability in discharged patients. In addition, pharmacists could play a key role through the Mini Program to connect with patients successfully by providing personalized pharmaceutical services.

3.
Zookeys ; 1200: 275-302, 2024.
Article in English | MEDLINE | ID: mdl-38766412

ABSTRACT

Six new species of Cryptochironomus Kieffer, 1918, C.absum Liu, sp. nov., C.beardi Liu, sp. nov., C.dentatus Liu, sp. nov., C.ferringtoni Liu, sp. nov., C.parallelus Liu, sp. nov. and C.taylorensis Liu, sp. nov., are described and illustrated based on adult males. The specimens were collected from various water systems in the United States and preserved by Dr. Leonard Charles Ferrington Jr. An updated key to adult males of all known Cryptochironomus species in the Nearctic region is also provided.

4.
Sci Rep ; 14(1): 11591, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773220

ABSTRACT

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Subject(s)
Cell Differentiation , Podocytes , Animals , Podocytes/metabolism , Podocytes/cytology , Mice , WT1 Proteins/metabolism , WT1 Proteins/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cell Line , Cell Culture Techniques/methods , Cell Line, Transformed , Cell Proliferation
5.
Environ Pollut ; 351: 124081, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697251

ABSTRACT

Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.

6.
Article in English | MEDLINE | ID: mdl-38714620

ABSTRACT

The safety of human health and agricultural production depends on the quality of farmland soil. Risk assessment of heavy metal pollution sources could effectively reduce the hazard of soil pollution from various sources. This study has identified and quantitatively analyzed pollution sources with geostatistical analysis and the APCS-MLR model. The potential ecological risk index was combined with the APCS-MLR model which has quantitatively calculated the source contribution. The results revealed that As, Cr, Cd, Pb, Zn, and Cu were enriched in soil. Geostatistical analysis and the APCS-MLR model have apportioned four pollution sources. The Mn and Ni were attributed to natural sources; As and Cr were from agricultural activities; Cu and Zn were originated from natural sources; Cd and Pb were derived from atmospheric deposition. Atmospheric deposition and agricultural activities were the largest contributors to ecological risk of heavy metals in soil, which accounted for 56.21% and 36.01% respectively. Atmospheric deposition and agricultural activities are classified as priority sources of pollution. The combination of source analysis receptor model and risk assessment is an effective method to quantify source contribution. This study has quantified the ecological risks of soil heavy metals from different sources, which will provide a reliable method for the identification of primary harmfulness sources of pollution for future studies.

7.
Am J Transl Res ; 16(4): 1188-1198, 2024.
Article in English | MEDLINE | ID: mdl-38715813

ABSTRACT

OBJECTIVE: To develop a predictive model based on preoperative quadriceps ultrasound measurements to determine frailty status in elderly patients undergoing abdominal surgery. METHODS: The clinical data of 148 elderly patients who underwent abdominal surgery from July 2018 to June 2022 were retrospectively analyzed. The patients were assessed for frailty using the Fried Frailty Phenotype Assessment Scale after operation and divided into a no-frailty group (n=89) and a frailty group (n=59). The differences in the patient's clinical data, perioperative indexes, and imaging indexes were compared. The risk factors affecting the frailty status of elderly patients undergoing abdominal surgery were analyzed by logistic regression. The efficacy of the prediction model was evaluated by receiver operating characteristic (ROC) curve, with model validity confirmed through calibration curves and decision curve analysis (DCA). RESULTS: The proportion of patients with age ≥80 and BMI ≥23 kg/m2 in the frailty group was significantly higher than that in the no-frailty group (both P<0.01). The operation duration and postoperative hospital stay in the frail group were significantly longer the non-frail group, and the complication rate within postoperative 7 days was significantly higher than that in the non-frail group (all P<0.05). The cross-sectional area of rectus femoris muscle, vastus medialis muscle thickness, vastus intermedius muscle thickness, rectus femoris muscle thickness, and lateral femoris muscle thickness were significantly less in the frail group than those of the no-frail group (all P<0.001). Multifactorial logistic regression analysis showed that BMI, surgical duration, vastus medialis muscle thickness, vastus intermedius muscle thickness, rectus femoris muscle thickness, and lateral femoral muscle thickness were independent risk factors affecting frailty status in elderly patients undergoing abdominal surgery (all P<0.05). The predictive model demonstrated high accuracy with an AUC of 0.926. CONCLUSION: BMI and thickness of all quadriceps muscle components were significant factors affecting the frailty status of elderly patients undergoing abdominal surgery. In addition, the developed model, with excellent accuracy, offers a potential tool for preoperative risk assessment in this patient population.

8.
Heliyon ; 10(9): e29915, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756596

ABSTRACT

The control precision of the working device has always been a challenging aspect in unmanned excavator research due to the adoption of a triangular drive mode and a complex hydraulic system in the working mechanism. The article focuses on the research of autonomous control for the downward motion of a robotic arm in an unmanned excavator equipped with a regeneration valve. The study aims to achieve precise tracking of fast movement trajectories during operator manipulation, utilizing Model Predictive Control (MPC). Furthermore, the exceptional disturbance rejection capability of the MPC algorithm is demonstrated through interference application. A comprehensive model considering mechanical, hydraulic, and electrical factors is established for the excavator boom. The MPC algorithm is applied to achieve precise control over the boom descent process, providing a foundation for motion control in unmanned excavators. This article presents a theoretical analysis to elucidate the robustness principle of MPC in the descent control of uncertain dynamic arms. By incorporating real parameters, we successfully track predetermined planned paths at different speeds and validate them on a 20-ton hydraulic excavator. The results demonstrate that the MPC control algorithm accurately manipulates the boom descent motion while exhibiting excellent disturbance rejection performance. Compared to PID control algorithms, MPC offers wider target adaptability range and better disturbance rejection performance, making it suitable for rapid application in controlling working devices of unmanned excavators.

9.
J Colloid Interface Sci ; 670: 223-233, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38761575

ABSTRACT

Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.

10.
Sci Total Environ ; 934: 173199, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750749

ABSTRACT

Frequent droughts have caused severe disaster losses in China. Such events can be minimized by enhancing the country's resilience and reducing its vulnerability, where this can ensure socioeconomic stability and sustainable development. Evaluating the vulnerability and resilience to drought is thus crucial for effectively managing the risk of disasters and promoting sustainable socioeconomic development. In this study, we constructed a comprehensive framework to assess the spatiotemporal characteristics of China's vulnerability and resilience to drought at the provincial scale from an input-output perspective by using the Super-efficiency Data Envelopment Analysis (DEA) model and the Super-efficiency Slacks-Based Measure DEA (SBM-DEA) model. This study focused on drought drivers, the disaster-forming environment, drought bearers, disaster intensity, and recovery. The results showed that the vulnerability to drought of 42 % of China's provinces decreased from 2010 to 2022, that of only 29 % of the provinces increased, while the status of a majority of provinces improved in general. The center of gravity of the vulnerability to drought moved toward the southwest over time and a spatial clustering of vulnerability was observed, with High-High clusters moving from the north to the south. Moreover, the resilience to drought declined in 36 % of provinces and increased in only 20 %, reflecting poor resilience overall. The center of gravity of China's overall resilience to drought moved northward, with a relatively stable spatial pattern and prominent clusters of Low-Low resilience indicating a pressing need for improvement. Areas with high vulnerability and low resilience were concentrated in inland western and eastern regions, and this highlights the importance of drought prevention and mitigation in provinces like Xinjiang, Inner Mongolia, Jiangxi, and Fujian. The findings here provide valuable insights for mitigating the risk of drought and promoting sustainable socioeconomic development.

11.
Sci Data ; 11(1): 356, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589398

ABSTRACT

Rapeseed is a critical cash crop globally, and understanding its distribution can assist in refined agricultural management, ensuring a sustainable vegetable oil supply, and informing government decisions. China is the leading consumer and third-largest producer of rapeseed. However, there is a lack of widely available, long-term, and large-scale remotely sensed maps on rapeseed cultivation in China. Here this study utilizes multi-source data such as satellite images, GLDAS environmental variables, land cover maps, and terrain data to create the China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 (CARM30). Our product was validated using independent samples and showed average F1 scores of 0.869 and 0.971 for winter and spring rapeseed. The CARM30 has high spatial consistency with existing 10 m and 20 m rapeseed maps. Additionally, the CARM30-derived rapeseed planted area was significantly correlated with agricultural statistics (R2 = 0.65-0.86; p < 0.001). The obtained rapeseed distribution information can serve as a reference for stakeholders such as farmers, scientific communities, and decision-makers.


Subject(s)
Brassica napus , Agriculture , China
12.
Article in English | MEDLINE | ID: mdl-38623938

ABSTRACT

The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.

13.
Biodivers Data J ; 12: e121952, 2024.
Article in English | MEDLINE | ID: mdl-38617833

ABSTRACT

Background: Tibetan Plateau is one of the most typical areas of biodiversity in the world because of its unique environmental and regional units, which breed unique biological communities and concentrate on many unique and rare wild animals and plants. Research on Chironomidae in the Tibetan Plateau is relatively weak. At present, the identification of Chironomidae species mainly depends on male adults, while identification of larvae and pupae is relatively difficult and there is less research on them. New information: During the investigations of insect diversity in the Tibetan Plateau, larval and pupal stages of Orthocladiusnitidoscutellatus Lundström, 1915 and Psectrocladiusnevalis Akhrorov, 1977 were described and illustrated. Matching and identification of larval and pupal stages were based on DNA barcodes. Neighbour-joining trees were reconstructed, based on known Orthocladius and Psectrocladius COI DNA barcodes, respectively.

15.
Bioresour Technol ; 400: 130654, 2024 May.
Article in English | MEDLINE | ID: mdl-38575095

ABSTRACT

Aquaculture wastewater management is critical for environmental sustainability. This study investigates the synergistic interactions between light and dark biofilms with a Rotating Algal Biofilm (RAB) system for effective aquaculture wastewater treatment. The RAB system, optimized with a 5-day harvest time and 12-hour hydraulic retention time, demonstrated superior biomass productivity (3.3 g m-2 d-1) and total ammoniacal nitrogen removal (82.3 %). Comparative analysis of light and dark biofilms revealed their complementary roles, with the light side exhibiting higher carbon assimilation and nutrient removal efficiencies, while the dark side contributed significantly to denitrification and phosphorus removal. Microbial community analysis highlighted the dominance of key bacterial genera such as Haliangium, Methyloversatilis and Comamonadaceae, along with the algal genus Chlorella, indicating their crucial roles in nutrient cycling. This study provides insights into the operational dynamics of RAB system for sustainable aquaculture wastewater treatment.


Subject(s)
Aquaculture , Biofilms , Wastewater , Aquaculture/methods , Wastewater/microbiology , Nitrogen , Phosphorus , Water Purification/methods , Light , Biomass , Waste Disposal, Fluid/methods , Bacteria/metabolism , Denitrification
16.
Antioxidants (Basel) ; 13(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38671834

ABSTRACT

The administration of NAD+ precursors is a potential approach to protect against liver damage and metabolic dysfunction. However, the effectiveness of different NAD+ precursors in alleviating metabolic disorders is still poorly elucidated. The current study was performed to compare the effectiveness of four different NAD+ precursors, including nicotinic acid (NA), niacinamide (NAM), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN) in alleviating high-glucose-induced injury to hepatocytes in a fish model, Megalobrama amblycephala. An in vitro high-glucose model was successfully established to mimic hyperglycemia-induced damage to the liver, which was evidenced by the reduced cell viability, the increased transaminase activity, and the depletion of cellular NAD+ concentration. The NAD+ precursors all improved cell viability, with the maximal effect observed in NR, which also had the most potent NAD+ boosting capacity and a significant Sirt1/3 activation effect. Meanwhile, NR presented distinct and superior effects in terms of anti-oxidative stress, inflammation inhibition, and anti-apoptosis compared with NA, NAM, and NMN. Furthermore, NR could effectively benefit glucose metabolism by activating glucose transportation, glycolysis, glycogen synthesis and the pentose phosphate pathway, as well as inhibiting gluconeogenesis. Moreover, an oral gavage test confirmed that NR presented the most potent effect in increasing hepatic NAD+ content and the NAD+/NADH ratio among four NAD+ precursors. Together, the present study results demonstrated that NR is most effective in attenuating the high-glucose-induced injury to hepatocytes in fish compared to other NAD+ precursors.

17.
Sci Total Environ ; 929: 172495, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38649056

ABSTRACT

Pollutants produced by cremation furnaces have gradually caused concern because of the increasing rate of cremation around the world. In this study, the levels, patterns, and emission factors of unintentional persistent organic pollutants (UPOPs) from cremation were investigated. The toxic equivalent (TEQ) concentrations (11 % O2 normalized) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in flue gas ranged from 0.036 to 22 ng TEQ/Nm3, while the levels of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in flue gas samples ranged from 0.0023 to 1.2 ng TEQ/Nm3 and 0.17-44 pg TEQ/Nm3, respectively. The average concentrations of UPOPs in flue gas from car-type furnaces were higher than those from flat-panel furnaces. Secondary chambers and air pollution control devices were effective for controlling UPOPs emissions. However, heat exchangers were not as effective for reducing UPOPs emissions. It was observed that the UPOPs profiles exhibited dissimilarities between fly ash and flue gas samples. HxCDF, OCDD, and PeCDF were the dominant homologs of PCDD/Fs in flue gas, while HxCDF, PeCDF, and HpCDF were the dominant homologs in fly ash. The fractions of MoCBs and MoCNs in fly ash were higher than those in flue gas. Finally, we conducted an assessment of the global emissions of UPOPs from cremation in the years of 2019 and 2021. The total emission of UPOPs in 47 countries was estimated at 239 g TEQ in 2021, which was during the peak period of the COVID-19 pandemic worldwide. The emissions in 2021 increased by approximately 24 % compared to 2019, with the impact of COVID-19 being a significant factor that cannot be disregarded.


Subject(s)
Air Pollutants , Cremation , Environmental Monitoring , Persistent Organic Pollutants , Air Pollutants/analysis , Environmental Monitoring/methods , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Biphenyls/analysis , Incineration , Dibenzofurans, Polychlorinated/analysis , Air Pollution/statistics & numerical data
18.
Front Immunol ; 15: 1374787, 2024.
Article in English | MEDLINE | ID: mdl-38601150

ABSTRACT

Background: Acute pancreatitis (AP) is a severe digestive system disorder with a significant risk of progressing to sepsis, a major cause of mortality. Unraveling the immunological pathways in AP is essential for developing effective treatments, particularly understanding the role of specific immune cell traits in this progression. Methods: Employing a bidirectional two-sample Mendelian Randomization (MR) approach, this study first examined the causal relationship between AP and 731 immune cell traits to identify those significantly associated with AP. Subsequently, we explored the causal associations between 731 immune cell traits and sepsis. The analysis utilized extensive genome-wide association studies (GWAS) summary datasets, with a focus on identifying common immune cell traits with statistically significant causal associations between AP and sepsis. Results: Our investigation identified 44 immune cell traits unidirectionally associated with AP and 36 traits unidirectionally associated with sepsis. Among these, CD127 on CD28+ CD45RA- CD8+ T cells emerged as a common mediator, accounting for 5.296% of the increased risk of sepsis in AP patients. This finding highlights the significant role of specific memory CD8+ T cells in the pathophysiology of AP and its progression to sepsis. Conclusion: This study elucidates the critical role of specific immune cell traits, particularly CD127hi memory CD8+ T cells, in the progression of AP to sepsis. Our findings provide a foundation for future research into targeted immune-modulatory therapies, potentially improving patient outcomes in AP-related sepsis and offering new insights into the complex immunological dynamics of this condition.


Subject(s)
Pancreatitis , Sepsis , Humans , Pancreatitis/genetics , CD8-Positive T-Lymphocytes , Acute Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Sepsis/genetics
19.
BMC Cancer ; 24(1): 514, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654313

ABSTRACT

BACKGROUND: Medical consortiums have been extensively established to facilitate the integration of health resources and bridge the technical gap among member institutions. However, some commonly appropriate technologies remain stagnant in subordinate hospitals, although they have been routinely applied in leading hospitals. Besides, the mechanism underlying differences in clinicians' adoption behavior at different levels of institutions was unknown. Therefore, this study aimed to investigate the differences in influencing mechanisms of clinicians' hepatic contrast-enhanced ultrasound technology (CEUS) utilization behavior between leading and subordinate hospitals within medical consortiums, thus providing clues for expanding effective and appropriate technologies within integrated care systems. METHODS: A self-designed scale was developed based on the theory of planned behavior (TPB). A multistage sampling method was applied to investigate clinicians who were aware of CEUS and worked in liver disease-related departments within the sampled medical institutions. The final sample size was 289. AMOS 24.0 software was used to construct multi-group structural equation modeling (SEM) to validate the hypotheses and determine the mechanism of hepatic CEUS utilization. RESULTS: It revealed that behavioral intention significantly influenced adoption behavior, regardless of whether it was in leading hospitals or subordinate hospitals (ß = 0.283, p < 0.001). Furthermore, behavioral attitude (ß = 0.361, p < 0.001) and perceived behavioral control (ß = 0.582, p < 0.001) exerted significant effects on adoption behavior through behavioral intention. However, in leading hospitals, subjective norm had a significant positive effect on behavioral intention (ß = 0.183, p < 0.01), while it had a significant negative impact on behavioral intention in the subordinate hospitals (ß = -0.348, p < 0.01). CONCLUSION: To effectively translate the adoption intention into actual behavior, it is recommended to elucidate the demand and facilitators involved in the process of health technology adoption across leading and subordinate hospitals. Additionally, bolstering technical support and knowledge dissemination within subordinate hospitals while harnessing the influential role of key individuals can further enhance this transformative process.


Subject(s)
Early Detection of Cancer , Liver Neoplasms , Humans , Liver Neoplasms/psychology , Liver Neoplasms/diagnostic imaging , Male , Female , Early Detection of Cancer/psychology , Early Detection of Cancer/methods , Attitude of Health Personnel , Ultrasonography/methods , Hospitals , Adult , Surveys and Questionnaires , Contrast Media , Practice Patterns, Physicians'
20.
Biomed Pharmacother ; 174: 116583, 2024 May.
Article in English | MEDLINE | ID: mdl-38626520

ABSTRACT

BACKGROUND: Primary membranous nephropathy (PMN) is an autoimmune glomerular disease. IL-6 is a potential therapeutic target for PMN. Previous clinical studies have demonstrated the effectiveness of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in treating membranous nephropathy. However, the mechanism of action of MFSD remains unclear. METHODS: Serum IL-6 levels were measured in patients with PMN and healthy subjects. The passive Heymann nephritis (PHN) rat model was established, and high and low doses of MFSD were used for intervention to observe the repair effect of MFSD on renal pathological changes and podocyte injury. RNA-seq was used to screen the possible targets of MFSD, and the effect of MFSD targeting IL-6/STAT3 was further verified by combining the experimental results. Finally, the efficacy of tocilizumab in PHN rats was observed. RESULTS: Serum IL-6 levels were significantly higher in PMN patients than in healthy subjects. These levels significantly decreased in patients in remission after MFSD treatment. MFSD treatment improved laboratory indicators in PHN rats, as well as glomerular filtration barrier damage and podocyte marker protein expression. Renal transcriptome changes showed that MFSD-targeted differential genes were enriched in JAK/STAT and cytokine-related pathways. MFSD inhibits the IL6/STAT3 pathway in podocytes. Additionally, MFSD significantly reduced serum levels of IL-6 and other cytokines in PHN rats. However, treatment of PHN with tocilizumab did not achieve the expected effect. CONCLUSION: The IL-6/STAT3 signaling pathway is activated in podocytes of experimental membranous nephropathy. MFSD alleviates podocyte damage by inhibiting the IL-6/STAT3 pathway.


Subject(s)
Antibodies, Monoclonal, Humanized , Drugs, Chinese Herbal , Glomerulonephritis, Membranous , Interleukin-6 , Podocytes , STAT3 Transcription Factor , Signal Transduction , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/metabolism , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , STAT3 Transcription Factor/metabolism , Animals , Interleukin-6/metabolism , Interleukin-6/blood , Drugs, Chinese Herbal/pharmacology , Humans , Male , Rats , Signal Transduction/drug effects , Rats, Sprague-Dawley , Female , Middle Aged , Disease Models, Animal , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...