Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Schizophr Bull ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754993

ABSTRACT

BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. STUDY DESIGN: Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. STUDY RESULTS: Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. CONCLUSIONS: Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.

2.
Article in English | MEDLINE | ID: mdl-38597685

ABSTRACT

The development and application of micropatterning technology play a promising role in the manipulation of biological substances and the exploration of life sciences at the microscale. However, the universally adaptable micropatterning method with user-friendly properties for acceptance in routine laboratories remains scarce. Herein, a green, facile, and rapid microcontact printing method is reported for upgrading popularization and diversification of biological patterning. The three-step printing can achieve high simplicity and fidelity of additive-free polydimethylsiloxane (PDMS) micropatterning and chip fabrication within 8 min as well as keep their high stability and diversity. A detailed experimental report is provided to support the advanced microcontact printing method. Furthermore, the applications of easy-to-operate PDMS-patterned chips are extensively validated to complete microdroplet array assembly with spatial control, cell pattern formation with high efficiency and geometry customization, and microtissue assembly and biomimetic tumor construction on a large scale. This straightforward method promotes diverse micropatternings with minimal time, effort, and expertise and maximal biocompatibility, which might broaden its applications in interdisciplinary scientific communities. This work also offers an insight into the establishment of popularized and market-oriented microtools for biomedical purposes such as biosensing, organs on a chip, cancer research, and bioscreening.

3.
Brain Res ; 1838: 148889, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552934

ABSTRACT

Table tennis training has been employed as an exercise treatment to enhance cognitive brain functioning in patients with mental illnesses. However, research on its underlying mechanisms remains limited. In this study, we investigated functional and structural changes in large-scale brain regions between 20 table tennis players (TTPs) and 21 healthy controls (HCs) using 7-Tesla magnetic resonance imaging (MRI) techniques. Compared with those of HCs, TTPs exhibited significantly greater fractional anisotropy (FA) and axial diffusivity (AD) values in multiple fiber tracts. We used the locations with the most significant structural changes in white matter as the seed areas and then compared static and dynamic functional connectivity (sFC and dFC). Brodmann 11, located in the orbitofrontal cortex, showed altered dFC values to large-scale brain regions, such as the occipital lobe, thalamus, and cerebellar hemispheres, in TTPs. Brodmann 48, located in the temporal lobe, showed altered dFC to the parietal lobe, frontal lobe, cerebellum, and occipital lobe. Furthermore, the AD values of the forceps minor (Fmi) and right anterior thalamic radiations (ATRs) were negatively correlated with useful field of view (UFOV) test scores in TTPs. Our results suggest that table tennis players exhibit a unique pattern of dynamic neural activity, this provides evidence for potential mechanisms through which table tennis interventions can enhance attention and other cognitive functions.

4.
Transl Psychiatry ; 14(1): 21, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38199983

ABSTRACT

High suicide risk represents a serious problem in patients with major depressive disorder (MDD), yet treatment options that could safely and rapidly ameliorate suicidal ideation remain elusive. Here, we tested the feasibility and preliminary efficacy of the Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT) in reducing suicidal ideation in patients with MDD. Thirty-two MDD patients with moderate to severe suicidal ideation participated in the current study. Suicidal ideation and depression symptoms were assessed before and after 5 days of open-label SAINT. The neural pathways supporting rapid-acting antidepressant and suicide prevention effects were identified with dynamic causal modelling based on resting-state functional magnetic resonance imaging. We found that 5 days of SAINT effectively alleviated suicidal ideation in patients with MDD with a high response rate of 65.63%. Moreover, the response rates achieved 78.13% and 90.63% with 2 weeks and 4 weeks after SAINT, respectively. In addition, we found that the suicide prevention effects of SAINT were associated with the effective connectivity involving the insula and hippocampus, while the antidepressant effects were related to connections of the subgenual anterior cingulate cortex (sgACC). These results show that SAINT is a rapid-acting and effective way to reduce suicidal ideation. Our findings further suggest that distinct neural mechanisms may contribute to the rapid-acting effects on the relief of suicidal ideation and depression, respectively.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Suicidal Ideation , Hippocampus , Magnetic Resonance Imaging , Antidepressive Agents/therapeutic use
5.
J Mater Chem B ; 12(3): 701-709, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38131524

ABSTRACT

A fluorescence-electrochemiluminescence (FL-ECL) dual-mode sensor for apoE gene detection has been developed, leveraging the unique properties of ruthenium metal organic framework nanosheets (RuMOFNSs). The system utilizes the quenching effect of the Ru(bpy)32+ ECL signal by ferrocene, leading to the synthesis of a multi-electron electrical signal marker, bisferrocene. By immobilizing the P-DNA on RuMOFNSs, bisferrocene quenches both FL and ECL signals. The addition of T-DNA and the consequent formation of double-stranded DNA enable the ExoIII enzyme to excise the bisferrocene fragment, restoring the signals. The sensor demonstrates wide detection linear ranges (1 fM to 1 nM for FL and 0.01 fM to 10 pM for ECL) and remarkable sensitivity (0.048 fM for FL and 0.016 fM for ECL). The dual-mode design offers enhanced reliability through a self-correction feature, reducing false positives. Compared to single-mode sensors, the dual-mode sensor shows significant advantages. Real-world testing confirms the sensor's capacity for robust detection in actual samples, underscoring its promising application in early disease diagnosis. This innovative approach opens up avenues for multi-signal response sensors, offering significant potential for diagnostic technologies.


Subject(s)
Metal-Organic Frameworks , Ruthenium , Electrochemical Techniques , Luminescent Measurements , Reproducibility of Results , DNA , Apolipoproteins E
6.
Front Physiol ; 14: 1289537, 2023.
Article in English | MEDLINE | ID: mdl-38046952

ABSTRACT

Skeletal muscles underpin myriad human activities, maintaining an intricate balance between protein synthesis and degradation crucial to muscle mass preservation. Historically, disruptions in this balance-where degradation overshadows synthesis-have marked the onset of muscle atrophy, a condition diminishing life quality and, in grave instances, imperiling life itself. While multiple protein degradation pathways exist-including the autophagy-lysosome, calcium-dependent calpain, and cysteine aspartate protease systems-the ubiquitin-proteasome pathway emerges as an especially cardinal avenue for intracellular protein degradation, wielding pronounced influence over the muscle atrophy trajectory. This paper ventures a panoramic view of predominant muscle atrophy types, accentuating the ubiquitin-proteasome pathway's role therein. Furthermore, by drawing from recent scholarly advancements, we draw associations between the ubiquitin-proteasome pathway and specific pathological conditions linked to muscle atrophy. Our exploration seeks to shed light on the ubiquitin-proteasome pathway's significance in skeletal muscle dynamics, aiming to pave the way for innovative therapeutic strategies against muscle atrophy and affiliated muscle disorders.

7.
Brain Res Bull ; 205: 110818, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972900

ABSTRACT

Schizophrenia is associated with a range of cognitive deficits, among which impairments in sustained attention are particularly significant. Previous research has investigated functional changes in the fronto-parietal network (FPN) related to attentional control in schizophrenia. However, the role of structural connectivity within the FPN in sustained attention deficits remains under-explored. Utilizing diffusion tensor imaging (DTI), this study investigated white matter integrity in 75 participants, comprising 37 individuals with schizophrenia (SZ) and 38 healthy controls (HC). Psychomotor vigilance task (PVT) performance was assessed to gauge sustained attention. The SZ group showed a significant reduction in fractional anisotropy (FA) and streamline counts within white matter tracts connecting frontal and parietal regions, compared to the HC group. Further, significant negative correlations were found between PVT performance and white matter integrity measures within the SZ group, specifically in the left FPN. Our findings indicate that structural abnormalities in the FPN are associated with sustained attention deficits in schizophrenia. These results contribute to our understanding of the neurobiological mechanisms underlying cognitive impairments in schizophrenia and offer potential avenues for targeted therapeutic interventions. Further research is warranted to validate these outcomes and explore their clinical implications.


Subject(s)
Cognition Disorders , Schizophrenia , White Matter , Humans , White Matter/diagnostic imaging , Brain , Schizophrenia/complications , Diffusion Tensor Imaging/methods
8.
Front Bioeng Biotechnol ; 11: 1281375, 2023.
Article in English | MEDLINE | ID: mdl-38033813

ABSTRACT

Single-cell manipulation is the key foundation of life exploration at individual cell resolution. Constructing easy-to-use, high-throughput, and biomimetic manipulative tools for efficient single-cell operation is quite necessary. In this study, a facile and efficient encapsulation of single cells relying on the massive and controllable production of droplets and collagen-alginate microgels using a microfluidic device is presented. High monodispersity and geometric homogeneity of both droplet and microgel generation were experimentally demonstrated based on the well-investigated microfluidic fabricating procedure. The reliability of the microfluidic platform for controllable, high-throughput, and improved single-cell encapsulation in monodisperse droplets and microgels was also confirmed. A single-cell encapsulation rate of up to 33.6% was achieved based on the established microfluidic operation. The introduction of stromal material in droplets/microgels for encapsulation provided single cells an in vivo simulated microenvironment. The single-cell operation achievement offers a methodological approach for developing simple and miniaturized devices to perform single-cell manipulation and analysis in a high-throughput and microenvironment-biomimetic manner. We believe that it holds great potential for applications in precision medicine, cell microengineering, drug discovery, and biosensing.

9.
Cell Biosci ; 13(1): 184, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784089

ABSTRACT

BACKGROUND: CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS: The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS: CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.

10.
Adv Sci (Weinh) ; 10(28): e2302928, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541300

ABSTRACT

Proton exchange membrane fuel cells (PEMFCs) have garnered significant attention due to their high efficiency and low emissions. However, PEMFC always suffers mass transfer and water management in performance improvement. Herein, an integrated gas diffusion layer (GDL) with wavy channel and micro-tunneled rib is designed and prepared to achieve faster and gentler mass transfer and excellent water management capability by laser engraving. Outstandingly, the new integrated GDL can use the back pressure of air as low as 0 and 50 kPa to respectively achieve 80% and 90% of fuel cell performance realized under pure oxygen. Such high performance is mainly due to the turbulent flow caused by wavy channel and express removing pathway of liquid water provided by micro-tunneled rib. Moreover, the new integrated GDL also shows wide humidity tolerance from 40% to 100% and a very high specific volume power density of 16,300 W L-1 due to the thin thickness of new integrated GDL. This new integrated GDL is expected to be widely used in PEMFC and other energy conversion devices.

11.
Macromol Biosci ; 23(12): e2300267, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37580176

ABSTRACT

Micropatterning is becoming an increasingly popular tool to realize microscale cell positioning and decipher cell activities and functions under specific microenvironments. However, a facile methodology for building a highly precise cell pattern still remains challenging. In this study, A simple and straightforward method for stable and efficient cell patterning with ultra-low background using polydimethylsiloxane through-hole membranes is developed. The patterning process is conveniently on the basis of membrane peeling and routine pipetting. Cell patterning in high quality involving over 97% patterning coincidence and zero residue on the background is achieved. The high repeatability and stability of the established method for multiple types of cell arrangements with different spatial profiles is demonstrated. The customizable cell patterning with ultra-low background and high diversity is confirmed to be quite feasible and reliable. Furthermore, the applicability of the patterning method for investigating the fundamental cell activities is also verified experimentally. The authors believe this microengineering advancement has valuable applications in many microscale cell manipulation-associated research fields including cell biology, cell engineering, cell imaging, and cell sensing.


Subject(s)
Dimethylpolysiloxanes , Dimethylpolysiloxanes/chemistry
12.
Emerg Microbes Infect ; 12(2): 2233643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37401832

ABSTRACT

African swine fever (ASF) is an acute and highly contagious lethal infectious disease in swine that severely threatens the global pig industry. At present, a safe and efficacious vaccine is urgently required to prevent and control the disease. In this study, we evaluated the safety and immunogenicity of replication-incompetent type-2 adenoviruses carrying African swine fever virus (ASFV) antigens, namely CP204L (p30), E183L (p54), EP402R (CD2v), B646L (p72), and B602L (p72 chaperone). A vaccine cocktail delivered by simultaneous intramuscular (IM) and intranasal (IN) administration robustly elicited both systemic and mucosal immune responses against AFSV in mice and swine and provided highly effective protection against the circulating ASFV strain in farmed pigs. This multi-antigen cocktail vaccine was well tolerated in the vaccinated animals. No significant interference among antigens was observed. The combined IM and IN vaccination using this adenovirus-vectored antigen cocktail vaccine warrants further evaluation for providing safe and effective protection against ASFV infection and transmission.


Subject(s)
Adenoviridae Infections , Adenovirus Vaccines , African Swine Fever Virus , African Swine Fever , Viral Vaccines , Swine , Animals , Mice , African Swine Fever Virus/genetics , African Swine Fever/prevention & control , Adenoviridae/genetics , Antigens, Viral/genetics , Vaccination
13.
Front Neurosci ; 17: 1202932, 2023.
Article in English | MEDLINE | ID: mdl-37521699

ABSTRACT

Table tennis involves quick and accurate motor responses during training and competition. Multiple studies have reported considerably faster visuomotor responses and expertise-related intrinsic brain activity changes among table tennis players compared with matched controls. However, the underlying neural mechanisms remain unclear. Herein, we performed static and dynamic resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 20 table tennis players and 21 control subjects using 7T ultra-high field imaging. We calculated the static and dynamic amplitude of low-frequency fluctuations (ALFF) of the two groups. The results revealed that table tennis players exhibited decreased static ALFF in the left inferior temporal gyrus (lITG) compared with the control group. Voxel-wised static functional connectivity (sFC) and dynamic functional connectivity (dFC) analyses using lITG as the seed region afforded complementary and overlapping results. The table tennis players exhibited decreased sFC in the right middle temporal gyrus and left inferior parietal gyrus. Conversely, they displayed increased dFC from the lITG to prefrontal cortex, particularly the left middle frontal gyrus, left superior frontal gyrus-medial, and left superior frontal gyrus-dorsolateral. These findings suggest that table tennis players demonstrate altered visuomotor transformation and executive function pathways. Both pathways involve the lITG, which is a vital node in the ventral visual stream. These static and dynamic analyses provide complementary and overlapping results, which may help us better understand the neural mechanisms underlying the changes in intrinsic brain activity and network organization induced by long-term table tennis skill training.

14.
Bioengineering (Basel) ; 10(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36978772

ABSTRACT

Far-infrared (FIR) is considered to be an ideal method to promote fatigue recovery due to its high permeability and strong radiation. In this paper, we report a flexible and wearable graphene heating device to help fatigue recovery of human exercise by using its high FIR divergence property. This study compares two different fatigue recovery methods, graphene far-infrared heating device hot application and natural recovery, over a 20 min recovery time among the male colleges' exhaustion exercise. Experimental results show that the achieved graphene device holds excellent electro-thermal radiation conversion efficiency of 70% and normal total emissivity of 89%. Moreover, the graphene FIR therapy in our work is more energy-efficient, easy to use, and wearable than traditional fatigue recovery methods. Such an anti-fatigue strategy offers new opportunities for enlarging potential applications of graphene film in body science, athletic training recovery, and wearable devices.

15.
Lab Chip ; 23(9): 2161-2174, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36943157

ABSTRACT

The establishment and application of biomimetic preclinical tumor models for generalizable and high-throughput antitumor screening play a promising role in drug discovery and cancer therapeutics. Herein, a facile and robust microengineering-assisted methodology for highly biomimetic three-dimensional (3D) tumor construction for dynamic and large-scale antitumor investigation is developed using micropatterned array chips. The high fidelity, simplicity, and stability of chip fabrication are guaranteed by improved polydimethylsiloxane (PDMS) microcontact printing. The employment of a PDMS-micropatterned chip permits microscale, simple, biocompatible, and reproducible cell localization with quantity uniformity and 3D tumor array formation with geometric homogeneity. Array-like 3D tumor models possessing complex multilayer cell arrangements, diverse phenotypic gradients, and biochemical gradients were prepared based on the use of easy-to-operate chips. The applicability of the established biomimetic models in temporal and massive investigations of tumor responses to antitumor chemotherapy is also verified experimentally. The results support the importance of the dimensional geometry and biomimetic degree of 3D tumors when conducting antitumor screening to explore drug susceptibility and resistance. This work provides a facile and reliable strategy to perform highly biomimetic tumor manipulation and analysis, which holds great potential for applications in oncology, pharmacology, precision medicine, and tissue microengineering.


Subject(s)
Biomimetics , Neoplasms , Humans , Neoplasms/pathology , High-Throughput Screening Assays , Drug Discovery
16.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36627345

ABSTRACT

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Mice , Humans , Animals , Molecular Docking Simulation , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/metabolism , Collagen Type I/metabolism
17.
Anal Chem ; 95(4): 2504-2512, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36651128

ABSTRACT

The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.


Subject(s)
Neoplasms , Humans , Drug Evaluation, Preclinical/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , High-Throughput Screening Assays , Drug Discovery , Printing, Three-Dimensional
18.
Org Biomol Chem ; 20(46): 9234-9240, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36382715

ABSTRACT

A phthalimide probe (P1) possessing a hydroxylamine group on the benzene ring has been prepared for fluorescence sensing of copper ions. The detection is based on the reaction between hydroxylamine and copper ions, resulting in two fluorescent products through hydroxyl rearrangement and dehydroxylation reactions. P1 shows a specific and sensitive fluorescence response towards copper ions with a limit of detection (LOD) of 1.11 nM (N = 3). The copper impurities from the industrial sources of the "click" ligand (tris(benzyltriazolylmethyl)amine (TBTA)) have been successfully examined using P1. This is the first case to utilize the reaction between hydroxylamine and copper ions. More importantly, the copper mediated hydroxyl rearrangement reaction opens a way to prepare a new sort of excited state intramolecular proton transfer (ESIPT) dye with ultra-small size and bright green fluorescence under physiological conditions.


Subject(s)
Copper , Fluorescent Dyes , Spectrometry, Fluorescence/methods , Protons , Hydroxylamines
19.
Dis Markers ; 2022: 1853002, 2022.
Article in English | MEDLINE | ID: mdl-36277973

ABSTRACT

Objectives: Schizophrenia (SCZ) is associated with disrupted functional brain connectivity, and antipsychotic medications are the primary and most commonly used treatment for schizophrenia. However, not all patients respond to antipsychotic medications. Methods: The study is aimed at investigating whether the graph-theory-based degree centrality (DC), derived from resting-state functional MRI (rs-fMRI), can predict the treatment outcomes. rs-fMRI data from 38 SCZ patients were collected and compared with findings from 38 age- and gender-matched healthy controls (HCs). The patients were treated with antipsychotic medications for 16 weeks before undergoing a second rs-fMRI scan. DC data were processed using DPABI and SPM12 software. Results: SCZ patients at baseline showed increased DC in the frontal and temporal gyrus, anterior cingulate cortex, and precuneus and reduced DC in bilateral subcortical gray matter structures. However, those abnormalities showed a clear renormalization after antipsychotic medication treatments. Support vector machine analysis using leave-one-out cross-validation achieved a correct classification rate of 84.2% (sensitivity 78.9%, specificity 89.5%, and area under the receiver operating characteristic curve (AUC) 0.925) for differentiating effective subjects from ineffective subjects. Brain areas that contributed most to the classification model were mainly located within the bilateral putamen, left inferior frontal gyrus, left middle occipital cortex, bilateral middle frontal gyrus, left cerebellum, left medial frontal gyrus, left inferior temporal gyrus, and left angular. Furthermore, the DC change within the bilateral putamen is negatively correlated with the symptom improvements after treatment. Conclusions: Our study confirmed that graph-theory-based measures, combined with machine-learning algorithms, can provide crucial insights into pathophysiological mechanisms and the effectiveness of antipsychotic medications.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Antipsychotic Agents/therapeutic use , Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Machine Learning
20.
World J Gastrointest Surg ; 14(9): 918-929, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36185554

ABSTRACT

BACKGROUND: Endoscopic resection approaches, including endoscopic submucosal dissection (ESD), submucosal tunneling endoscopic resection (STER) and endoscopic full-thickness resection (EFTR), have been widely used for the treatment of submucosal tumors (SMTs) located in the upper gastrointestinal tract. However, compared to SMTs located in the esophagus or stomach, endoscopic resection of SMTs from the esophagogastric junction (EGJ) is much more difficult because of the sharp angle and narrow lumen of the EGJ. SMTs originating from the muscularis propria (MP) in the EGJ, especially those that grow extraluminally and adhere closely to the serosa, make endoscopic resection even more difficult. AIM: To investigate the predictors of difficult endoscopic resection for SMTs from the MP layer at the EGJ. METHODS: A total of 90 patients with SMTs from the MP layer at the EGJ were included in the present study. The difficulty of endoscopic resection was defined as a long procedure time, failure of en bloc resection and intraoperative bleeding. Clinicopathological, endoscopic and follow-up data were collected and analyzed. Statistical analysis of independent risks for piecemeal resection, long operative time, and intraoperative bleeding were assessed using univariate and multivariate analyses. RESULTS: According to the location and growth pattern of the tumor, 44 patients underwent STER, 14 patients underwent EFTR, and the remaining 32 patients received a standard ESD procedure. The tumor size was 20.0 mm (range 5.0-100.0 mm). Fourty-seven out of 90 lesions (52.2%) were regularly shaped. The overall en bloc resection rate was 84.4%. The operation time was 43 min (range 16-126 min). The intraoperative bleeding rate was 18.9%. There were no adverse events that required therapeutic intervention during or after the procedures. The surgical approach had no significant correlation with en bloc resection, long operative time or intraoperative bleeding. Large tumor size (≥ 30 mm) and irregular tumor shape were independent predictors for piecemeal resection (OR: 7.346, P = 0.032 and OR: 18.004, P = 0.029, respectively), long operative time (≥ 60 min) (OR: 47.330, P = 0.000 and OR: 6.863, P = 0.034, respectively) and intraoperative bleeding (OR: 20.631, P = 0.002 and OR: 19.020, P = 0.021, respectively). CONCLUSION: Endoscopic resection is an effective treatment for SMTs in the MP layer at the EGJ. Tumors with large size and irregular shape were independent predictors for difficult endoscopic resection.

SELECTION OF CITATIONS
SEARCH DETAIL
...