Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
Fish Shellfish Immunol ; 149: 109593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697374

ABSTRACT

A type of fermented bile acids (FBAs) has been produced through a biological method, and its effects on growth performance, metabolism, and intestinal microbiota in largemouth bass were investigated. The results demonstrated that incorporating 0.03 %-0.05 % FBAs diet could improve the final weight, weight gain and specific growth rate, and decrease the feed conversion ratio. Dietary FBAs did not significantly affect the levels of high-density lipoprotein, low-density lipoprotein, and triglycerides, but decreased the activities of α-amylase in most groups. Adding FBAs to the diet significantly increased the integrity of the microscopic structure of the intestine, thickened the muscular layer of the intestine, and notably enhanced its intestinal barrier function. The addition of FBAs to the diet increased the diversity of the gut microbiota in largemouth bass. At the phylum level, there was an increase in the abundance of Proteobacteria, Firmicutes, Tenericutes and Cyanobacteria and a significant decrease in Actinobacteria and Bacteroidetes. At the genus level, the relative abundance of beneficial bacteria Mycoplasma in the GN6 group and Coprococcus in the GN4 group significantly increased, while the pathogenic Enhydrobacter was inhibited. Meanwhile, the highest levels of AKP and ACP were observed in the groups treated with 0.03 % FBAs, while the highest levels of TNF-α and IL-10 were detected in the group treated with 0.04 % FBAs. Additionally, the highest levels of IL-1ß, IL-8T, GF-ß, IGF-1, and IFN-γ were noted in the group treated with 0.06 % FBAs. These results suggested that dietary FBAs improved growth performance and intestinal wall health by altering lipid metabolic profiles and intestinal microbiota in largemouth bass.


Subject(s)
Animal Feed , Bass , Bile Acids and Salts , Diet , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Bile Acids and Salts/metabolism , Animal Feed/analysis , Bass/growth & development , Bass/immunology , Diet/veterinary , Intestines/microbiology , Fermentation , Metabolome , Dietary Supplements/analysis , Random Allocation
2.
Bioact Mater ; 38: 399-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38774457

ABSTRACT

Mesenchymal stem cell (MSC) migration determines the healing capacity of bone and is crucial in promoting bone regeneration. Migration of MSCs is highly dependent on degradation of extracellular matrix by proteolytic enzymes. However, the underlying mechanisms of how enzymolysis paves the way for MSCs to migrate from their niche to the defect area is still not fully understood. Here, this study shows that high-temperature requirement A3 (HtrA3) overcomes the physical barrier and provides anchor points through collagen IV degradation, paving the way for MSC migration. HtrA3 is upregulated in MSCs at the leading edge of bone defect during the early stage of healing. HtrA3 degrades the surrounding collagen IV, which increases the collagen network porosity and increases integrin ß1 expression. Subsequently, integrin ß1 enhances the mechanotransduction of MSCs, thus remodeling the cytoskeleton, increasing cellular stiffness and nuclear translocation of YAP, eventually promoting the migration and subsequent osteogenic differentiation of MSCs. Local administration of recombinant HtrA3 in rat cranial bone defects significantly increases new bone formation and further validates the enhancement of MSC migration. This study helps to reveal the novel roles of HtrA3, explore potential targets for regenerative medicine, and offer new insights for the development of bioactive materials.

3.
Adv Sci (Weinh) ; : e2306348, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696655

ABSTRACT

Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.

4.
Respir Res ; 25(1): 215, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764025

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS: We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS: Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS: BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.


Subject(s)
Autophagy , Betulinic Acid , Carcinoma, Non-Small-Cell Lung , Drug Synergism , ErbB Receptors , Lung Neoplasms , Mice, Nude , Pentacyclic Triterpenes , Protein Kinase Inhibitors , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Mice , Autophagy/drug effects , Xenograft Model Antitumor Assays/methods , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Mice, Inbred BALB C , Triterpenes/pharmacology , Gefitinib/pharmacology , A549 Cells , Aniline Compounds/pharmacology , Acrylamides/pharmacology , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Indoles , Pyrimidines
5.
J Transl Med ; 22(1): 451, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741136

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a high-prevalence autosomal dominant neuromuscular disease characterized by significant clinical and genetic heterogeneity. Genetic diagnosis of FSHD remains a challenge because it cannot be detected by standard sequencing methods and requires a complex diagnosis workflow. METHODS: We developed a comprehensive genetic FSHD detection method based on Oxford Nanopore Technologies (ONT) whole-genome sequencing. Using a case-control design, we applied this procedure to 29 samples and compared the results with those from optical genome mapping (OGM), bisulfite sequencing (BSS), and whole-exome sequencing (WES). RESULTS: Using our ONT-based method, we identified 59 haplotypes (35 4qA and 24 4qB) among the 29 samples (including a mosaic sample), as well as the number of D4Z4 repeat units (RUs). The pathogenetic D4Z4 RU contraction identified by our ONT-based method showed 100% concordance with OGM results. The methylation levels of the most distal D4Z4 RU and the double homeobox 4 gene (DUX4) detected by ONT sequencing are highly consistent with the BSS results and showed excellent diagnostic efficiency. Additionally, our ONT-based method provided an independent methylation profile analysis of two permissive 4qA alleles, reflecting a more accurate scenario than traditional BSS. The ONT-based method detected 17 variations in three FSHD2-related genes from nine samples, showing 100% concordance with WES. CONCLUSIONS: Our ONT-based FSHD detection method is a comprehensive method for identifying pathogenetic D4Z4 RU contractions, methylation level alterations, allele-specific methylation of two 4qA haplotypes, and variations in FSHD2-related genes, which will all greatly improve genetic testing for FSHD.


Subject(s)
DNA Methylation , Muscular Dystrophy, Facioscapulohumeral , Whole Genome Sequencing , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Humans , DNA Methylation/genetics , Haplotypes/genetics , Male , Case-Control Studies , Homeodomain Proteins/genetics , Female , Nanopore Sequencing/methods , Adult
6.
Article in English | MEDLINE | ID: mdl-38748922

ABSTRACT

Micro/nanomotors (MNMs) are miniature devices that can generate energy through chemical reactions or physical processes, utilizing this energy for movement. By virtue of their small size, self-propulsion, precise positioning within a small range, and ability to access microenvironments, MNMs have been applied in various fields including sensing, biomedical applications, and pollutant adsorption. However, the development of food-grade MNMs and their application in food delivery systems have been scarcely reported. Currently, there are various issues with the decomposition, oxidation, or inability to maintain the activity of some nutrients or bioactive substances, such as the limited application of curcumin (Cur) in food. Compared to traditional delivery systems, MNMs can adjust the transport speed and direction as needed, effectively protecting bioactive substances during delivery and achieving efficient transportation. Therefore, this study utilizes polysaccharides as the substrate, employing a simple, rapid, and pollution-free template method to prepare polysaccharide-based microtubes (PMTs) and polysaccharide-based micro/nanomotors (PMNMs). PMNMs can achieve multifunctional propulsion by modifying ferrosoferric oxide (Fe3O4), platinum (Pt), and glucose oxidase (GOx). Fe-PMNMs and Pt-PMNMs exhibit excellent photothermal conversion performance, showing promise for applications in photothermal therapy. Moreover, PMNMs can effectively deliver curcumin, achieving the effective delivery of nutrients and exerting the anti-inflammatory performance of the system.

7.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570866

ABSTRACT

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Subject(s)
Benzamides , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Imidazoles , Lung Neoplasms , Triazines , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mesothelin , Lung Neoplasms/pathology , GPI-Linked Proteins/metabolism , Crizotinib , Cell Line, Tumor , Brain Neoplasms/pathology
8.
Research (Wash D C) ; 7: 0330, 2024.
Article in English | MEDLINE | ID: mdl-38562525

ABSTRACT

In the evolving landscape of robotics and visual navigation, event cameras have gained important traction, notably for their exceptional dynamic range, efficient power consumption, and low latency. Despite these advantages, conventional processing methods oversimplify the data into 2 dimensions, neglecting critical temporal information. To overcome this limitation, we propose a novel method that treats events as 3D time-discrete signals. Drawing inspiration from the intricate biological filtering systems inherent to the human visual apparatus, we have developed a 3D spatiotemporal filter based on unsupervised machine learning algorithm. This filter effectively reduces noise levels and performs data size reduction, with its parameters being dynamically adjusted based on population activity. This ensures adaptability and precision under various conditions, like changes in motion velocity and ambient lighting. In our novel validation approach, we first identify the noise type and determine its power spectral density in the event stream. We then apply a one-dimensional discrete fast Fourier transform to assess the filtered event data within the frequency domain, ensuring that the targeted noise frequencies are adequately reduced. Our research also delved into the impact of indoor lighting on event stream noise. Remarkably, our method led to a 37% decrease in the data point cloud, improving data quality in diverse outdoor settings.

9.
PLoS One ; 19(4): e0302267, 2024.
Article in English | MEDLINE | ID: mdl-38626172

ABSTRACT

BACKGROUND: Preterm infants have imperfect neurological development, uncoordinated sucking-swallowing-breathing, which makes it difficult to realize effective oral feeding after birth. How to help preterm infants achieve complete oral feeding as soon as possible has become an important issue in the management of preterm infants. Non-nutritive sucking (NNS), as a useful oral stimulation, can improve the effect of oral feeding in preterm infants. This review aimed to explore the effect of NNS on oral feeding progression through a meta-analysis. METHODS: We systematically searched PubMed, CINHAL, Web of Science, Embase, Cochrane databases, China's National Knowledge Infrastructure (CNKI), Wanfang and VIP database from inception to January 20, 2024. Search terms included 'non-nutritive sucking' 'oral feeding' and 'premature.' Eligibility criteria involved randomized controlled studies in English or Chinese. Studies were excluded if they were reviews, case reports, or observational studies from which valid data could not be extracted or outcome indicators were poorly defined. The meta-analysis will utilize Review Manager 5.3 software, employing either random-effects or fixed-effects models based on observed heterogeneity. We calculated the mean difference (MD) and 95% confidence interval (CI) for continuous data, and estimated pooled odds ratios (ORs) for dichotomous data. Sensitivity and publication bias analyses were conducted to ensure robust and reliable findings. We evaluated the methodological quality of randomized controlled trials (RCTs) utilizing the assessment tool provided by the Cochrane Collaboration. RESULTS: A total of 23 randomized controlled trials with 1461 preterm infants were included. The results of the meta-analysis showed that NNS significantly shortened time taken to achieve exclusive oral feeding (MD = -5.37,95%CI = -7.48 to-3.26, p<0.001), length of hospital stay(MD = -4.92, 95% CI = -6.76 to -3.09, p<0.001), time to start oral feeding(MD = -1.41, 95% CI = -2.36 to -0.45, p = 0.004), time to return to birth weight(MD = -1.72, 95% CI = -2.54 to -0.91, p<0.001). Compared to the NNS group, the control group had significant weight gain in preterm infants, including weight of discharge (MD = -61.10, 95% CI = -94.97 to -27.23, p = 0.0004), weight at full oral feeding (MD = -86.21, 95% CI = -134.37 to -38.05, p = 0.0005). In addition, NNS reduced the incidence of feeding intolerance (OR = 0.22, 95% CI = 0.14 to 0.35, p<0.001) in preterm infants. CONCLUSION: NNS improves oral feeding outcomes in preterm infants and reduces the time to reach full oral feeding and hospitalization length. However, this study was limited by the relatively small sample size of included studies and did not account for potential confounding factors. There was some heterogeneity and bias between studies. More studies are needed in the future to validate the effects on weight gain and growth in preterm infants. Nevertheless, our meta-analysis provides valuable insights, updating existing evidence on NNS for improving oral feeding in preterm infants and promoting evidence-based feeding practices in this population.


Subject(s)
Infant Nutritional Physiological Phenomena , Premature Birth , Infant , Female , Infant, Newborn , Humans , Infant Nutritional Physiological Phenomena/physiology , Infant, Premature/physiology , Birth Weight , Weight Gain
10.
PLoS One ; 19(4): e0298004, 2024.
Article in English | MEDLINE | ID: mdl-38635528

ABSTRACT

BACKGROUND: Liver hepatocellular carcinoma (LIHC) is a prevalent form of primary liver cancer. Research has demonstrated the contribution of tumor stem cells in facilitating tumor recurrence, metastasis, and treatment resistance. Despite this, there remains a lack of established cancer stem cells (CSCs)-associated genes signatures for effectively predicting the prognosis and guiding the treatment strategies for patients diagnosed with LIHC. METHODS: The single-cell RNA sequencing (scRNA-seq) and bulk RNA transcriptome data were obtained based on public datasets and computerized firstly using CytoTRACE package and One Class Linear Regression (OCLR) algorithm to evaluate stemness level, respectively. Then, we explored the association of stemness indicators (CytoTRACE score and stemness index, mRNAsi) with survival outcomes and clinical characteristics by combining clinical information and survival analyses. Subsequently, weighted co-expression network analysis (WGCNA) and Cox were applied to assess mRNAsi-related genes in bulk LIHC data and construct a prognostic model for LIHC patients. Single-sample gene-set enrichment analysis (ssGSEA), Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Tumor Immune Estimation Resource (TIMER) analysis were employed for immune infiltration assessment. Finally, the potential immunotherapeutic response was predicted by the Tumor Immune Dysfunction and Exclusion (TIDE), and the tumor mutation burden (TMB). Additionally, pRRophetic package was applied to evaluate the sensitivity of high and low-risk groups to common chemotherapeutic drugs. RESULTS: A total of four genes (including STIP1, H2AFZ, BRIX1, and TUBB) associated with stemness score (CytoTRACE score and mRNAsi) were identified and constructed a risk model that could predict prognosis in LIHC patients. It was observed that high stemness cells occurred predominantly in the late stages of LIHC and that poor overall survival in LIHC patients was also associated with high mRNAsi scores. In addition, pathway analysis confirmed the biological uniqueness of the two risk groups. Personalized treatment predictions suggest that patients with a low risk benefited more from immunotherapy, while those with a high risk group may be conducive to chemotherapeutic drugs. CONCLUSION: The current study developed a novel prognostic risk signature with genes related to CSCs, which provides novel ideas for the diagnosis, prognosis and treatment of LIHC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Single-Cell Gene Expression Analysis , RNA-Seq , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Neoplasm Recurrence, Local , Prognosis , Neoplastic Stem Cells , RNA
11.
Stem Cell Res Ther ; 15(1): 115, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650029

ABSTRACT

BACKGROUND: Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS: In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS: Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS: The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.


Subject(s)
Mesenchymal Stem Cells , Oocytes , Ovary , Female , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Ovary/cytology , Oocytes/cytology , Oocytes/metabolism , Mesenchymal Stem Cell Transplantation/methods , Ovarian Follicle/metabolism , Ovarian Follicle/cytology
12.
Entropy (Basel) ; 26(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539773

ABSTRACT

The No Free Lunch Theorem tells us that no algorithm can beat other algorithms on all types of problems. The algorithm selection structure is proposed to select the most suitable algorithm from a set of algorithms for an unknown optimization problem. This paper introduces an innovative algorithm selection approach called the CNN-HT, which is a two-stage algorithm selection framework. In the first stage, a Convolutional Neural Network (CNN) is employed to classify problems. In the second stage, the Hypothesis Testing (HT) technique is used to suggest the best-performing algorithm based on the statistical analysis of the performance metric of algorithms that address various problem categories. The two-stage approach can adapt to different algorithm combinations without the need to retrain the entire model, and modifications can be made in the second stage only, which is an improvement of one-stage approaches. To provide a more general structure for the classification model, we adopt Exploratory Landscape Analysis (ELA) features of the problem as input and utilize feature selection techniques to reduce the redundant ones. In problem classification, the average accuracy of classifying problems using CNN is 96%, which demonstrates the advantages of CNN compared to Random Forest and Support Vector Machines. After feature selection, the accuracy increases to 98.8%, further improving the classification performance while reducing the computational cost. This demonstrates the effectiveness of the first stage of the CNN-HT method, which provides a basis for algorithm selection. In the experiments, CNN-HT shows the advantages of the second stage algorithm as well as good performance with better average rankings in different algorithm combinations compared to the individual algorithms and another algorithm combination approach.

13.
Mol Neurobiol ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546929

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal aggregation of α-synuclein (α-syn) and the loss of dopaminergic neurons. Although microbial infection has been implicated in the pathogenesis of PD, the associated virulence factors and the underlying molecular mechanisms require further elucidation. Here, we found that intestinal infection with Nocardia farcinica induced a series of PD-like symptoms in Caenorhabditis elegans, such as the accelerated degeneration of dopaminergic neurons, impaired locomotion capacity, and enhanced α-syn aggregation, through the disturbance of mitochondrial functions. To identify the potential virulence factors involved in these effects, we knocked out the nbtB/C and nbtS genes in N. farcinica, which are localized in the gene clusters responsible for nocobactin biosynthesis. The deletion of either gene partially rescued the degenerative effects of wild-type N. farcinica on dopaminergic neurons by attenuating mitochondrial dysfunction. LC-MS analysis further identified a decrease in the abundance of several siderophores in the two mutants, including nocobactin NA-a, nocobactin NA-b, and nocardimicin B. Collectively, our results demonstrated that intestinal N. farcinica infection in C. elegans facilitates PD-like pathogenesis and provides novel evidence for the involvement of pathogenic bacteria in neurodegenerative diseases via non-neuroinvasive mechanisms.

14.
Fitoterapia ; 175: 105926, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537887

ABSTRACT

Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.

15.
iScience ; 27(2): 108901, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38533455

ABSTRACT

Heterosis, a universal phenomenon in nature, mainly reflected in the superior productivity, quality, and fitness of F1 hybrids compared with their inbred parents, has been exploited in agriculture and greatly benefited human society in terms of food security. However, the flexible and efficient utilization of heterosis has remained a challenge in hybrid breeding systems because of the limitations of "three-line" and "two-line" methods. In the past two decades, rapidly developed biotechnologies have provided unprecedented conveniences for both understanding and utilizing heterosis. Notably, "third-generation" (3G) hybrid breeding technology together with high-throughput sequencing and gene editing greatly promoted the efficiency of hybrid breeding. Here, we review emerging ideas about the genetic or molecular mechanisms of heterosis and the development of 3G hybrid breeding system in the age of biotechnology. In addition, we summarized opportunities and challenges for optimal heterosis utilization in the future.

16.
Plant J ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507513

ABSTRACT

Culm development in grasses can be controlled by both miR156 and cytokinin. However, the crosstalk between the miR156-SPL module and the cytokinin metabolic pathway remains largely unknown. Here, we found CYTOKININ OXIDASE/DEHYDROGENASE4 (PvCKX4) plays a negative regulatory role in culm development of the bioenergy grass Panicum virgatum (switchgrass). Overexpression of PvCKX4 in switchgrass reduced the internode diameter and length without affecting tiller number. Interestingly, we also found that PvCKX4 was always upregulated in miR156 overexpressing (miR156OE) transgenic switchgrass lines. Additionally, upregulation of either miR156 or PvCKX4 in switchgrass reduced the content of isopentenyl adenine (iP) without affecting trans-zeatin (tZ) accumulation. It is consistent with the evidence that the recombinant PvCKX4 protein exhibited much higher catalytic activity against iP than tZ in vitro. Furthermore, our results showed that miR156-targeted SPL2 bound directly to the promoter of PvCKX4 to repress its expression. Thus, alleviating the SPL2-mediated transcriptional repression of PvCKX4 through miR156 overexpression resulted in a significant increase in cytokinin degradation and impaired culm development in switchgrass. On the contrary, suppressing PvCKX4 in miR156OE transgenic plants restored iP content, internode diameter, and length to wild-type levels. Most strikingly, the double transgenic lines retained the same increased tiller numbers as the miR156OE transgenic line, which yielded more biomass than the wild type. These findings indicate that the miR156-SPL module can control culm development through transcriptional repression of PvCKX4 in switchgrass, which provides a promising target for precise design of shoot architecture to yield more biomass from grasses.

17.
Nanoscale ; 16(9): 4542-4562, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38299713

ABSTRACT

With the increasing demand for wearable and miniature electronics, in-plane zinc (Zn) ion hybrid micro-supercapacitors (ZIHMSCs), as a promising and compatible energy power source, have attracted tremendous attention due to their unique merits. Despite enormous development and breakthroughs in this field, there is still a lack of a systematic and comprehensive review to update the recent progress of in-plane ZIHMSCs in the design and fabrication of both micro-anodes and micro-cathodes, the exploration and optimization of new electrolytes, and the investigation of related-energy storage mechanisms. This minireview summarizes the key breakthroughs and recent advances in the construction of high-performance in-plane ZIHMSCs. First, the background and fundamentals of in-plane ZIHMSCs are briefly introduced. Then, new concepts, strategies, and latest exciting developments in the preparation and interfacial engineering of Zn metal micro-anodes, the fabrication of advanced micro-cathodes, and the exploration of new electrolyte systems are discussed, respectively. Finally, the key challenges and future directions for the development of high-performance in-plane ZIHMSCs are presented as well. This review not only accounts for the recent research progress in the field of the in-plane ZIHMSCs, but also provides important new insights into the design of next-generation miniaturized energy storage devices.

18.
Life Sci ; 341: 122490, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38336274

ABSTRACT

AIMS: The "Warburg effect" has been developed from the discovery that hypoxia-inducible factor 1α (HIF-1α) could promote the conversion of pyruvate to lactate. However, no studies have linked hypoxia and lactate metabolism to uterine corpus endometrial carcinoma (UCEC). MAIN METHODS: Sequencing and clinical data of patients with UCEC were extracted from The Cancer Genome Atlas (TCGA) database. Hypoxia-related lactate metabolism genes (HRLGs) were screened using Spearman's correlation analysis. A prognostic signature based on HRLGs was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. A comprehensive analysis was conducted on the molecular features, immune environment, mutation patterns, and response to drugs between different risk groups. In vitro and in vivo experiments were performed to verify the function of KIF23. KEY FINDINGS: A five HRLG-based prognostic signature was identified. The prognostic outcome was unfavorable for the high-risk subgroup. Observation of increased pathway activities associated with cell proliferation and DNA damage repair was noted in the high-risk subgroup. Additionally, notable correlations were observed between risk score and immune microenvironment, mutational features, and drug responsiveness. Further, we confirmed KIF23 as a novel oncogene in UCEC, whose silencing decreased proliferation and promoted apoptosis of cancer cells. KIF23 knockdown reduced tumor growth in nude mice. We demonstrated that KIF23 was upregulated under hypoxic stress in a HIF-1α dependent manner. Moreover, KIF23 regulated lactate dehydrogenase A expression. SIGNIFICANCE: The developed HRLG-related signature was associated with prognosis, immune microenvironment, and drug sensitivity in UCEC. We also revealed KIF23 as a hypoxia-regulated lactate metabolism-related oncogene.


Subject(s)
Endometrial Neoplasms , Oncogenes , Animals , Mice , Humans , Female , Mice, Nude , Oncogenes/genetics , Mutation , Hypoxia , Endometrial Neoplasms/genetics , Tumor Microenvironment/genetics , Microtubule-Associated Proteins
19.
Cell Rep ; 43(2): 113821, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38368611

ABSTRACT

The titer of viruses that persist and propagate in their insect vector must be high enough for transmission yet not harm the insect, but the mechanism of this dynamic balance is unclear. Here, expression of inosine monophosphate dehydrogenase (LsIMPDH), a rate-limiting enzyme for guanosine triphosphate (GTP) synthesis, is shown to be downregulated by increased levels of N6-methyladenosine (m6A) on LsIMPDH mRNA in rice stripe virus (RSV)-infected small brown planthoppers (SBPHs; Laodelphax striatellus), the RSV vector, which decreases GTP content, thus limiting viral proliferation. Moreover, planthopper methyltransferase-like protein 3 (LsMETTL3) and m6A reader protein LsYTHDF3 are found to catalyze and recognize the m6A on LsIMPDH mRNA, respectively, and cooperate in destabilizing LsIMPDH transcripts. Co-silencing assays show that negative regulation of viral proliferation by both LsMETTL3 and LsYTHDF3 is partially dependent on LsIMPDH. This distinct mechanism limits virus replication in an insect vector, providing a potential gene target to block viral transmission.


Subject(s)
Adenosine/analogs & derivatives , Insect Vectors , Animals , Guanosine Triphosphate , RNA, Messenger/genetics , Cell Proliferation
20.
J Integr Plant Biol ; 66(2): 208-227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326968

ABSTRACT

In plants, the genome structure of hybrids changes compared with their parents, but the effects of these changes in hybrids remain elusive. Comparing reciprocal crosses between Col × C24 and C24 × Col in Arabidopsis using high-throughput chromosome conformation capture assay (Hi-C) analysis, we found that hybrid three-dimensional (3D) chromatin organization had more long-distance interactions relative to parents, and this was mainly located in promoter regions and enriched in genes with heterosis-related pathways. The interactions between euchromatin and heterochromatin were increased, and the compartment strength decreased in hybrids. In compartment domain (CD) boundaries, the distal interactions were more in hybrids than their parents. In the hybrids of CURLY LEAF (clf) mutants clfCol × clfC24 and clfC24 × clfCol , the heterosis phenotype was damaged, and the long-distance interactions in hybrids were fewer than in their parents with lower H3K27me3. ChIP-seq data revealed higher levels of H3K27me3 in the region adjacent to the CD boundary and the same interactional homo-trans sites in the wild-type (WT) hybrids, which may have led to more long-distance interactions. In addition, the differentially expressed genes (DEGs) located in the boundaries of CDs and loop regions changed obviously in WT, and the functional enrichment for DEGs was different between WT and clf in the long-distance interactions and loop regions. Our findings may therefore propose a new epigenetic explanation of heterosis in the Arabidopsis hybrids and provide new insights into crop breeding and yield increase.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Histones/metabolism , Transcriptome , Plant Breeding , Hybrid Vigor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...