Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Se Pu ; 42(8): 740-748, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086242

ABSTRACT

Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 µg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 µg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 µg/kg) were 78.1%-118%, with the intra- and inter-day precisions of 0.2%-11.1% and 0.8%-8.7%, respectively. This method was applied in analyzing real samples, and PFASs including perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, and perfluorotridecanoic acid, were detected in all 11 samples evaluated. This method is simple, sensitive, and suitable for use in analyzing PFASs in fish samples.


Subject(s)
Fishes , Fluorocarbons , Food Contamination , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Fluorocarbons/analysis , Animals , Chromatography, High Pressure Liquid , Food Contamination/analysis , Caprylates/analysis , Alkanesulfonic Acids/analysis
3.
Food Sci Nutr ; 12(8): 5587-5604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139959

ABSTRACT

This study aims to elucidate the detailed metabolic implications of varying monacolin K levels and sterilization methods on Monascus-fermented rice products (MFRPs), acclaimed for their health benefits and monacolin K content. Advanced metabolite profiling of various MFRP variants was conducted using ultrahigh-performance liquid chromatography coupled with tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS). Statistical analysis encompassed t-tests, ANOVA, and multivariate techniques including PCA, PLS-DA, and OPLS-DA. Notable variations in metabolites were observed across MFRPs with differing monacolin K levels, particularly in variants such as MR1-S, MR1.5-S, MR2-S, and MR3-S. Among the 524 identified metabolites, significant shifts were noted in organic acids, derivatives, lipids, nucleosides, and organic oxygen compounds. The study also uncovered distinct metabolic changes resulting from different sterilization methods and the use of highland barley as a fermentation substitute for rice. Pathway analysis shed light on affected metabolic pathways, including those involved in longevity regulation, cGMP-PKG signaling, and the biosynthesis of unsaturated fatty acids. The research provides critical insights into the complex metabolic networks of MFRPs, underscoring the impact of fermentation substrates and conditions on monacolin K levels and their health implications. This study not only guides the nutritional optimization of MFRPs but also emphasizes the strategic importance of substrate choice and sterilization techniques in enhancing the nutritional and medicinal value of these functional foods.

4.
Nat Methods ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965442

ABSTRACT

Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.

5.
Cell Rep ; 43(7): 114431, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38968071

ABSTRACT

Bromodomain-containing protein 4 (BRD4) has emerged as a promising therapeutic target in prostate cancer (PCa). Understanding the mechanisms of BRD4 stability could enhance the clinical response to BRD4-targeted therapy. In this study, we report that BRD4 protein levels are significantly decreased during mitosis in a PLK1-dependent manner. Mechanistically, we show that BRD4 is primarily phosphorylated at T1186 by the CDK1/cyclin B complex, recruiting PLK1 to phosphorylate BRD4 at S24/S1100, which are recognized by the APC/CCdh1 complex for proteasome pathway degradation. We find that PLK1 overexpression lowers SPOP mutation-stabilized BRD4, consequently rendering PCa cells re-sensitized to BRD4 inhibitors. Intriguingly, we report that sequential treatment of docetaxel and JQ1 resulted in significant inhibition of PCa. Collectively, the results support that PLK1-phosphorylated BRD4 triggers its degradation at M phase. Sequential treatment of docetaxel and JQ1 overcomes BRD4 accumulation-associated bromodomain and extra-terminal inhibitor (BETi) resistance, which may shed light on the development of strategies to treat PCa.


Subject(s)
Azepines , Cell Cycle Proteins , Docetaxel , Drug Resistance, Neoplasm , Mitosis , Polo-Like Kinase 1 , Prostatic Neoplasms , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Transcription Factors , Triazoles , Humans , Cell Cycle Proteins/metabolism , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Phosphorylation , Proto-Oncogene Proteins/metabolism , Mitosis/drug effects , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Azepines/pharmacology , Triazoles/pharmacology , Docetaxel/pharmacology , Proteolysis/drug effects , Nuclear Proteins/metabolism , Animals , CDC2 Protein Kinase/metabolism , Mice, Nude , Mice , Proteasome Endopeptidase Complex/metabolism , Bromodomain Containing Proteins , Repressor Proteins
6.
CNS Neurosci Ther ; 30(7): e14891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39056330

ABSTRACT

BACKGROUND: The prevalence of dementia around the world is increasing, and these patients are more likely to have cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorders over their lifetime. Previous studies have proven that melatonin could improve memory loss, but its specific mechanism is still confused. METHODS: In this study, we used in vivo and in vitro models to examine the neuroprotective effect of melatonin on scopolamine (SCOP)-induced cognitive dysfunction. The behavioral tests were performed. 18F-FDG PET imaging was used to assess the metabolism of the brain. Protein expressions were determined through kit detection, Western blot, and immunofluorescence. Nissl staining was conducted to reflect neurodegeneration. MTT assay and RNAi transfection were applied to perform the in vitro experiments. RESULTS: We found that melatonin could ameliorate SCOP-induced cognitive dysfunction and relieve anxious-like behaviors or HT22 cell damage. 18F-FDG PET-CT results showed that melatonin could improve cerebral glucose uptake in SCOP-treated mice. Melatonin restored the cholinergic function, increased the expressions of neurotrophic factors, and ameliorated oxidative stress in the brain of SCOP-treated mice. In addition, melatonin upregulated the expression of silent information regulator 1 (SIRT1), which further relieved endoplasmic reticulum (ER) stress by decreasing the expression of phosphorylate inositol-requiring enzyme (p-IRE1α) and its downstream, X-box binding protein 1 (XBP1). CONCLUSIONS: These results indicated that melatonin could ameliorate SCOP-induced cognitive dysfunction through the SIRT1/IRE1α/XBP1 pathway. SIRT1 might be the critical target of melatonin in the treatment of dementia.


Subject(s)
Cognitive Dysfunction , Melatonin , Scopolamine , Signal Transduction , Sirtuin 1 , X-Box Binding Protein 1 , Melatonin/pharmacology , Melatonin/therapeutic use , Animals , Sirtuin 1/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , X-Box Binding Protein 1/metabolism , Mice , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Maze Learning/drug effects
7.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998989

ABSTRACT

Cholesteric liquid crystal microcapsules (CLCMs) are used to improve the stability of liquid crystals while ensuring their stimulus response performance and versatility, with representative applications such as sensing, anticounterfeiting, and smart fabrics. However, the reflectivity and angular anisotropy decrease because of the anchoring effect of the polymer shell matrix, and the influence of particle size on this has not been thoroughly studied. In this study, the effect of synthesis technology on microcapsule particle size was investigated using a complex coalescence method, and the effect of particle size on the reflectivity and angular anisotropy of CLCMs was investigated in detail. A particle size of approximately 66 µm with polyvinyl alcohol (PVA, 1:1) exhibited a relative reflectivity of 16.6% and a bandwidth of 20 nm, as well as a narrow particle size distribution of 22 µm. The thermosetting of microcapsules coated with PVA was adjusted and systematically investigated by controlling the mass ratio. The optimized mass ratio of microcapsules (66 µm) to PVA was 2:1, increasing the relative reflectivity from 16.6% (1:1) to 32.0% (2:1) because of both the higher CLCM content and the matching between the birefringence of the gelatin-arabic shell system and PVA. Furthermore, color based on Bragg reflections was observed in the CLCM-coated ortho-axis and blue-shifted off-axis, and this change was correlated with the CLCM particle size. Such materials are promising for anticounterfeiting and color-based applications with bright colors and angular anisotropy in reflection.

8.
PLoS Genet ; 20(6): e1011309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885192

ABSTRACT

PLK1 (Polo-like kinase 1) plays a critical role in the progression of lung adenocarcinoma (LUAD). Recent studies have unveiled that targeting PLK1 improves the efficacy of immunotherapy, highlighting its important role in the regulation of tumor immunity. Nevertheless, our understanding of the intricate interplay between PLK1 and the tumor microenvironment (TME) remains incomplete. Here, using genetically engineered mouse model and single-cell RNA-seq analysis, we report that PLK1 promotes an immunosuppressive TME in LUAD, characterized with enhanced M2 polarization of tumor associated macrophages (TAM) and dampened antigen presentation process. Mechanistically, elevated PLK1 coincides with increased secretion of CXCL2 cytokine, which promotes M2 polarization of TAM and diminishes expression of class II major histocompatibility complex (MHC-II) in professional antigen-presenting cells. Furthermore, PLK1 negatively regulates MHC-II expression in cancer cells, which has been shown to be associated with compromised tumor immunity and unfavorable patient outcomes. Taken together, our results reveal PLK1 as a novel modulator of TME in LUAD and provide possible therapeutic interventions.


Subject(s)
Adenocarcinoma of Lung , Cell Cycle Proteins , Lung Neoplasms , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Single-Cell Analysis , Tumor Microenvironment , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Antigen Presentation/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
10.
Protein Cell ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801297

ABSTRACT

Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells. Midbody, a protein-dense organelle that forms at the intercellular bridge, is indispensable for successful cytokinesis. However, the regulatory mechanism of cytokinesis at the midbody still remains elusive. Here, we unveil a critical role for NudC-like protein 2 (NudCL2), a co-chaperone of heat shock protein 90 (Hsp90), in cytokinesis regulation by stabilizing regulator of chromosome condensation 2 (RCC2) at the midbody in mammalian cells. NudCL2 localizes at the midbody, and its downregulation results in cytokinesis failure, multinucleation and midbody disorganization. Using iTRAQ-based quantitative proteomic analysis, we find that RCC2 levels are decreased in NudCL2 knockout (KO) cells. Moreover, Hsp90 forms a complex with NudCL2 to stabilize RCC2, which is essential for cytokinesis. RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells. Importantly, ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion, but not vice versa. Together, our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.

11.
BMJ Open ; 14(5): e072597, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749684

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of standardised antiretroviral therapy (ART) among different HIV subtypes in people living with HIV/AIDS (PLWHA), and to screen the best ART regimen for this patient population. DESIGN: A retrospective cohort study was performed, and PLWHA residing in Huzhou, China, between 2018 and 2020, were enrolled. SETTING AND PARTICIPANTS: Data from 625 patients, who were newly diagnosed with HIV/AIDS in the AIDS Prevention and Control Information System in Huzhou between 2018 and 2020, were reviewed. ANALYSIS AND OUTCOME MEASURES: Data regarding demographic characteristics and laboratory investigation results were collected. Immune system recovery was used to assess the effectiveness of ART, and an increased percentage of CD4+ T lymphocyte counts >30% after receiving ART for >1 year was determined as immunopositive. A multiple logistic regression model was used to comprehensively quantify the association between PLWHA immunological response status and virus subtype. In addition, the joint association between different subtypes and treatment regimens on immunological response status was investigated. RESULTS: Among 326 enrolled PLWHA with circulating recombinant forms (CRFs) CRF01_AE, CRF07_BC and other HIV/AIDS subtypes, the percentages of immunopositivity were 74.0%, 65.6% and 69.6%, respectively. According to multivariate logistic regression models, there was no difference in the immunological response between patients with CRF01_AE, CRF07_BC and other subtypes of HIV/AIDS who underwent ART (CRF07_BC: adjusted OR (aOR) (95% CI) = 0.8 (0.4 to 1.4); other subtypes: aOR (95% CI) = 1.2 (0.6 to 2.3)). There was no evidence of an obvious joint association between HIV subtypes and ART regimens on immunological response. CONCLUSIONS: Standardised ART was beneficial to all PLWHA, regardless of HIV subtypes, although it was more effective, to some extent, in PLWHA with CRF01_AE.


Subject(s)
HIV Infections , Humans , Retrospective Studies , Male , Female , Adult , Middle Aged , HIV Infections/drug therapy , HIV Infections/immunology , CD4 Lymphocyte Count , China , Anti-HIV Agents/therapeutic use , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/immunology , HIV-1/immunology , Treatment Outcome
12.
J Med Internet Res ; 26: e48564, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748460

ABSTRACT

BACKGROUND: The information epidemic emerged along with the COVID-19 pandemic. While controlling the spread of COVID-19, the secondary harm of epidemic rumors to social order cannot be ignored. OBJECTIVE: The objective of this paper was to understand the characteristics of rumor dissemination before and after the pandemic and the corresponding rumor management and debunking mechanisms. This study aimed to provide a theoretical basis and effective methods for relevant departments to establish a sound mechanism for managing network rumors related to public health emergencies such as COVID-19. METHODS: This study collected data sets of epidemic rumors before and after the relaxation of the epidemic prevention and control measures, focusing on large-scale network rumors. Starting from 3 dimensions of rumor content construction, rumor propagation, and rumor-refuting response, the epidemic rumors were subdivided into 7 categories, namely, involved subjects, communication content, emotional expression, communication channels, communication forms, rumor-refuting subjects, and verification sources. Based on this framework, content coding and statistical analysis of epidemic rumors were carried out. RESULTS: The study found that the rumor information was primarily directed at a clear target audience. The main themes of rumor dissemination were related to the public's immediate interests in the COVID-19 field, with significant differences in emotional expression and mostly negative emotions. Rumors mostly spread through social media interactions, community dissemination, and circle dissemination, with text content as the main form, but they lack factual evidence. The preferences of debunking subjects showed differences, and the frequent occurrence of rumors reflected the unsmooth channels of debunking. The χ2 test of data before and after the pandemic showed that the P value was less than .05, indicating that the difference in rumor content before and after the pandemic had statistical significance. CONCLUSIONS: This study's results showed that the themes of rumors during the pandemic are closely related to the immediate interests of the public, and the emotions of the public accelerate the spread of these rumors, which are mostly disseminated through social networks. Therefore, to more effectively prevent and control the spread of rumors during the pandemic and to enhance the capability to respond to public health crises, relevant authorities should strengthen communication with the public, conduct emotional risk assessments, and establish a joint mechanism for debunking rumors.


Subject(s)
COVID-19 , Information Dissemination , Pandemics , COVID-19/prevention & control , COVID-19/epidemiology , Humans , China/epidemiology , Information Dissemination/methods , Pandemics/prevention & control , SARS-CoV-2 , Social Media/statistics & numerical data , Communication
13.
BMJ Open ; 14(5): e085646, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816041

ABSTRACT

OBJECTIVE: To analyse the HIV-1 subtypes and molecular transmission characteristics of HIV-infected older individuals aged 50 and above in Huzhou City, and provide a scientific basis for prevention and treatment strategies for them. DESIGN: A cross-sectional study with clustered molecular transmission network cases was performed, and basic epidemiological information was retrieved from the Chinese Centres for Disease Prevention and Control (CDC) Information System. SETTING AND PARTICIPANTS: A molecular epidemiological study was conducted in 899 newly diagnosed HIV-infected individuals from January 2019 and March 2023 in Huzhou city, Zhejiang province, Eastern China. Out of these, HIV sequences were successfully obtained from 673 individuals, including 274 who were older individuals aged 50 and above. PRIMARY AND SECONDARY OUTCOMES: Reverse transcription-polymerase chain reaction (PCR) and nested PCR were used to amplify the polymerase gene of HIV-1, and gene sequencing was performed. We used univariate and multivariate logistic regression to describe the association of clustered molecular transmission network cases. RESULTS: In total, 274 valid HIV sequences of older individuals were obtained, which revealed 14 subtypes. Circulating recombinant forms (CRF) 07_BC accounted for 55.8% and CRF01_AE accounted for 20.1% of the subtypes. Data of 150 older individuals were included in the molecular transmission network, and the proportion of elderly individuals in clustered cases is 52.26% (150/287). The results of multivariable logistic regression analysis showed that the older age group (60-82 years) and CRF07_BC subtype were associated with case clustering (transmission risk). CONCLUSIONS: The key high-risk transmission network was mainly composed of the older age group (60-82 years) and CRF07_BC subtype. It is necessary to further strengthen AIDS health promotion and education for individuals aged 60 years and above, as well as for patients with the CRF07_BC subtype, to reduce HIV transmission and clustering risk.


Subject(s)
HIV Infections , HIV-1 , Humans , China/epidemiology , Cross-Sectional Studies , HIV Infections/transmission , HIV Infections/epidemiology , Male , Female , Middle Aged , Aged , HIV-1/genetics , Aged, 80 and over , Molecular Epidemiology
14.
Front Pharmacol ; 15: 1328977, 2024.
Article in English | MEDLINE | ID: mdl-38645561

ABSTRACT

Introduction: P. candolleana Wight et Arn. Is a traditional Chinese herbal medicine used by the Gelao nationality in southwest China, has been historically applied to treat various gastrointestinal disorders. Despite its traditional usage, scientific evidence elucidating its efficacy and mechanisms in treating ulcerative colitis (UC) remains sparse. This study aimed to determine the quality and chemical composition of Pimpinella candolleana and to identify its potential therapeutic targets and mechanisms in acetic acid-induced ulcerative colitis (UC) rats through integrated approaches. Methods: Morphological and microscopic characteristics, thin layer chromatography (TLC) identification, and quantitative analysis of P. candolleana were performed. UPLC-Q-TOF-MS, network pharmacology, and molecular docking were used to identify its chemical composition and predict its related targets in UC. Furthermore, a rat model was established to evaluate the therapeutic effect and potential mechanism of P. candolleana on UC. Results: Microscopic identification revealed irregular and radial arrangement of the xylem in P. candolleana, with a light green cross-section and large medullary cells. UPLC-Q-TOF-MS analysis detected and analyzed 570 metabolites, including flavonoids, coumarins, and terpenoids. Network pharmacology identified 12 effective components and 176 target genes, with 96 common targets for P. candolleana-UC, including quercetin, luteolin, and nobiletin as key anti-inflammatory components. GO and KEGG revealed the potential involvement of their targets in RELA, JUN, TNF, IKBKB, PTGS2, and CHUK, with action pathways such as PI3K-Akt, TNF, IL-17, and apoptosis. Molecular docking demonstrated strong affinity and binding between these key components (quercetin, luteolin, and nobiletin) and the key targets of the pathway, including JUN and TNF. Treatment with P. candolleana improved body weight loss, the disease activity index, and colonic histological damage in UC rats. Pimpinella candolleana also modulated the levels of IL-2 and IL-6 in UC rats, reduced the expression of pro-inflammatory cytokines such as IL-6, MAPK8, TNF-α, CHUK, and IKBKB mRNA, and decreased the expression of TNF, IKBKB, JUN, and CHUK proteins in the colon of UC rats, thereby reducing inflammation and alleviating UC symptoms. Conclusion: P. candolleana exerts its protective effect on UC by reducing the expression of proinflammatory cytokines and inhibiting inflammation, providing scientific evidence for its traditional use in treating gastrointestinal diseases. This study highlights the potential of P. candolleana as a natural therapeutic agent for UC and contributes to the development of novel medicines for UC treatment.

15.
Int Wound J ; 21(3): e14747, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445778

ABSTRACT

The purpose of the meta-analysis was to evaluate and compare the photodynamic therapy's effectiveness in treating infected skin wounds. The results of this meta-analysis were analysed, and the odds ratio (OR) and mean difference (MD) with 95% confidence intervals (CIs) were calculated using dichotomous or contentious random- or fixed-effect models. For the current meta-analysis, 6 examinations spanning from 2013 to 2021 were included, encompassing 154 patients with infected skin wounds were the used studies' starting point. Photodynamic therapy had a significantly lower wound ulcer size (MD, -4.42; 95% CI, -7.56--1.28, p = 0.006), better tissue repair (MD, -8.62; 95% CI, -16.76--0.48, p = 0.04) and lower microbial cell viability (OR, 0.13; 95% CI, 0.04-0.42, p < 0.001) compared with red light exposure in subjects with infected skin wounds. The examined data revealed that photodynamic therapy had a significantly lower wound ulcer size, better tissue repair and lower microbial cell viability compared with red light exposure in subjects with infected skin wounds. However, given that all examinations had a small sample size, consideration should be given to their values.


Subject(s)
Photochemotherapy , Skin Diseases, Infectious , Skin Ulcer , Soft Tissue Injuries , Wound Infection , Humans , Ulcer , Skin Ulcer/drug therapy , Skin , Wound Infection/drug therapy
16.
J Ethnobiol Ethnomed ; 20(1): 31, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429640

ABSTRACT

INTRODUCTION: This study aims to document and preserve the traditional medicinal knowledge of the Gelao community in Northern Guizhou, China, providing valuable insights for modern pharmacological research and the development of these traditional remedies. METHODS: Our methodology encompassed a blend of literature review, community interviews, and participatory observation to delve into the traditional knowledge of animal-derived medicines among the Gelao community. We employed quantitative ethnological and ecological assessment techniques to evaluate the significance of these practices. Informed consent was secured before conducting interviews, with a focus on ascertaining the types of medicines familiar to the informants, including their local names, sources, methods of preparation, application techniques, diseases treated, frequency of use, and safety considerations. RESULTS: Our research cataloged 55 varieties of animal-derived medicines utilized by the Gelao people. Out of these, 34 originate from wild animals, mainly encompassing small insects, reptiles, and aquatic species; the remaining 21 are derived from domesticated animals, largely involving their tissues, organs, and various physiological or pathological by-products. These medicines are primarily applied in treating pediatric ailments (13 types), internal disorders (11 types), gynecological issues (3 types), dermatological problems (7 types), ENT conditions (3 types), trauma-related injuries (5 types), joint and bone ailments (5 types), infections (2 types), dental issues (2 types), and urolithiasis (1 type), with three types being used for other miscellaneous conditions. Commonly utilized medicines, such as honey, Blaps beetle, chicken gallstones, and snake-based products, are preferred for their availability, edibility, and safety within the Gelao communities. CONCLUSION: The Gelao community's traditional medicines represent a rich diversity of animal sources, showcasing extensive expertise and knowledge in their processing and clinical applications. This wealth of traditional knowledge offers novel perspectives for the contemporary pharmacological study and development of these remedies. Additionally, our research plays a crucial role in aiding the preservation and continuation of this invaluable cultural heritage.


Subject(s)
Biological Products , Medicine, Traditional , Southeast Asian People , Animals , Humans , China
17.
Cardiovasc Res ; 120(8): 954-970, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38252884

ABSTRACT

AIMS: Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS: Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION: Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.


Subject(s)
Adiponectin , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury , Animals , Adiponectin/metabolism , Adiponectin/genetics , Adiponectin/blood , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/enzymology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Inositol Phosphates/metabolism , Adipocytes/metabolism , Adipocytes/enzymology , Adipocytes/drug effects , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Male , Mice , Disease Models, Animal , Signal Transduction , Proteolysis , Humans
18.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168994

ABSTRACT

Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity-CDG-nCas9 and TDG-nCas9-with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5' end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.

19.
Diagn Pathol ; 19(1): 18, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254204

ABSTRACT

BACKGROUND: Breast cancer is the most common malignant tumor in the world. Intraoperative frozen section of sentinel lymph nodes is an important basis for determining whether axillary lymph node dissection is required for breast cancer surgery. We propose an RRCART model based on a deep-learning network to identify metastases in 2362 frozen sections and count the wrongly identified sections and the associated reasons. The purpose is to summarize the factors that affect the accuracy of the artificial intelligence model and propose corresponding solutions. METHODS: We took the pathological diagnosis of senior pathologists as the gold standard and identified errors. The pathologists and artificial intelligence engineers jointly read the images and heatmaps to determine the locations of the identified errors on sections, and the pathologists found the reasons (false reasons) for the errors. Through NVivo 12 Plus, qualitative analysis of word frequency analysis and nodal analysis was performed on the error reasons, and the top-down error reason framework of "artificial intelligence RRCART model to identify frozen sections of breast cancer lymph nodes" was constructed based on the importance of false reasons. RESULTS: There were 101 incorrectly identified sections in 2362 slides, including 42 false negatives and 59 false positives. Through NVivo 12 Plus software, the error causes were node-coded, and finally, 2 parent nodes (high-frequency error, low-frequency error) and 5 child nodes (section quality, normal lymph node structure, secondary reaction of lymph nodes, micrometastasis, and special growth pattern of tumor) were obtained; among them, the error of highest frequency was that caused by normal lymph node structure, with a total of 45 cases (44.55%), followed by micrometastasis, which occurred in 30 cases (29.70%). CONCLUSIONS: The causes of identification errors in examination of sentinel lymph node frozen sections by artificial intelligence are, in descending order of influence, normal lymph node structure, micrometastases, section quality, special tumor growth patterns and secondary lymph node reactions. In this study, by constructing an artificial intelligence model to identify the error causes of frozen sections of lymph nodes in breast cancer and by analyzing the model in detail, we found that poor quality of slices was the preproblem of many identification errors, which can lead to other errors, such as unclear recognition of lymph node structure by computer. Therefore, we believe that the process of artificial intelligence pathological diagnosis should be optimized, and the quality control of the pathological sections included in the artificial intelligence reading should be carried out first to exclude the influence of poor section quality on the computer model. For cases of micrometastasis, we suggest that by differentiating slices into high- and low-confidence groups, low-confidence micrometastatic slices can be separated for manual identification. The normal lymph node structure can be improved by adding samples and training the model in a targeted manner.


Subject(s)
Breast Neoplasms , Frozen Sections , Child , Humans , Female , Artificial Intelligence , Breast Neoplasms/diagnosis , Neoplasm Micrometastasis/diagnosis , Lymph Nodes
20.
Acta Pharmacol Sin ; 45(2): 366-377, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37770579

ABSTRACT

Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1ß in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Humans , Mice , Animals , Sirtuin 1/metabolism , Diabetic Nephropathies/pathology , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Kidney/pathology , Transcription Factors/metabolism , Lipid Metabolism , Glucose/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Ligases/metabolism , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL