Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Huan Jing Ke Xue ; 45(7): 3778-3788, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022926

ABSTRACT

The spatial-temporal distribution pattern of surface O3 over the Qinghai-Xizang Plateau (QXP) was analyzed based on air quality monitoring data and meteorological data from 12 cities on the QXP from 2015 to 2021. Kolmogorov-Zurbenko (KZ) filtering was employed to separate the original O3-8h series into components at different time scales. Then, multiple linear regression of meteorological variables was used to quantitatively isolate the effects of meteorology and emissions. The results revealed that the annual mass concentrations of surface O3-8h from 2015 to 2021 in 12 cities over the QXP ranged from 78.7 to 156.7 µg·m-3, and the exceedance rates of O3 mass concentrations (National Air Quality Standard of grade II) ranged from 0.7%-1.5%. The monthly O3-8h mass concentration displayed a single-peak inverted "V"-shape and a multi-peak "M"-shape. The maximum monthly concentration of O3 occurred in April to July, and valleys occurred in July, September, and December. The short-term, seasonal, and long-term components of O3-8hdecomposed by KZ filtering contributed 29.6%, 51.4%, and 9.1% to the total variance in the original O3 sequence in 12 cities, respectively. From the whole region, the meteorological conditions were unfavorable for O3 reduction on the QXP from 2015 to 2017, which made the long-term component of O3 increase by 0.2-2.1 µg·m-3. The meteorological conditions were favorable for O3-8h reduction from 2018 to 2021, which led to the long-term component of O3-8h decrease by 0.4-1.1 µg·m-3. The meteorological conditions increased the long-term component of O3-8h in Ngari, Lhasa, Naqu, Nyingchi, Qamdo, Haixi, and Xining, with an average contribution of 30.1%. The meteorological conditions decreased the long-term component of O3-8h in Shigatse and Golog, with contributions of 359.0% and 56.5%, respectively. The increase in the long-term component of O3-8h in Ngari, Shigatse, Nagqu, Haixi, and Xining could be due to the rapid decrease in the long-term component of PM2.5 (4.04 µg·ï¼ˆm3·a)-1).

2.
Neurochem Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037560

ABSTRACT

With the aging global population, Alzheimer's disease (AD) has become a significant social and economic burden, necessitating the development of novel therapeutic strategies. This study investigates the therapeutic potential of nicotinamide mononucleotide (NMN) synbiotics, a combination of NMN, Lactiplantibacillus plantarum CGMCC 1.16089, and lactulose, in mitigating AD pathology. APP/PS1 mice were supplemented with NMN synbiotics and compared against control groups. The effects on amyloid-ß (Aß) deposition, intestinal histopathology, tight junction proteins, inflammatory cytokines, and reactive oxygen species (ROS) levels were assessed. NMN synbiotics intervention significantly reduced Aß deposition in the cerebral cortex and hippocampus by 67% and 60%, respectively. It also ameliorated histopathological changes in the colon, reducing crypt depth and restoring goblet cell numbers. The expression of tight junction proteins Claudin-1 and ZO-1 was significantly upregulated, enhancing intestinal barrier integrity. Furthermore, NMN synbiotics decreased the expression of proinflammatory cytokines IL-1ß, IL-6, and TNF-α, and reduced ROS levels, indicative of attenuated oxidative stress. The reduction in Aß deposition, enhancement of intestinal barrier function, decrease in neuroinflammation, and alleviation of oxidative stress suggest that NMN synbiotics present a promising therapeutic intervention for AD by modulating multiple pathological pathways. Further research is required to elucidate the precise mechanisms, particularly the role of the NLRP3 inflammasome pathway, which may offer a novel target for AD treatment.

3.
Eye Contact Lens ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968599

ABSTRACT

PURPOSE: This study aimed to investigate changes in objective vision quality in mesopic environments in teenagers with myopia after wearing orthokeratology (OK) lenses. METHODS: This prospective clinical study included 45 patients (80 eyes) who received OK lenses at the First Affiliated Hospital of Jinan University from March 2021 to September 2021. An Optical Path Difference-Scan III refractive power/corneal analyzer was used to determine the corneal topographic parameters (corneal e, corneal Q, surface asymmetry index (SAI), and surface regularity index (SRI)), higher-order aberrations (HOAs), axial length (AL) change, lens decentration, induced astigmatism, target power, and Strehl ratio (SR) in a mesopic visual environment after wearing OK lenses for 6 months. In addition, corneal morphological parameters, HOAs, and SR were analyzed in a mesopic visual environment. Finally, we investigated the correlations among corneal morphology, HOAs, AL change, lens decentration, induced astigmatism, and SR. RESULTS: The SAI value was significantly higher (P<0.01), and the corneal e was significantly lower (P<0.01), in a mesopic visual environment after wearing OK lenses for 1 week than baseline. A significant increase was observed in total HOAs and spherical aberrations, compared with before the OK lenses were worn (P<0.01). In addition, SR in the mesopic visual environment decreased significantly after wearing the lenses (P<0.01). No significant differences were observed (P>0.05) among the 1-week, 1-month, 3-month, and 6-month follow-up findings. After 6 months, AL and lens decentration did not differ significantly compared with before (P>0.05), whereas induced astigmatism significantly increased (P<0.05). Negative correlations were observed between corneal Q, SAI, SRI, HOAs, induced astigmatism, and SR, and positive correlations were found between corneal e, AL change, lens decentration, and SR, after wearing OK lenses. KEY POINTS: • Wearing orthokeratology lenses significantly altered corneal morphology and HOAs in myopic teenagers within 1 week. • The changes that we observed in the eyes of adolescents with myopia after wearing orthokeratology lenses decreased vision quality in mesopic environments. • Strehl ratio is significantly correlated with multiple parameters, including HOAs, AL change, and lens decentration. CONCLUSIONS: In teenagers with myopia wearing OK lenses, significant changes in vision quality and corneal morphology were observed, leading to increased aberrations and affecting optical imaging quality. Furthermore, SR is significantly correlated with multiple parameters, including HOAs, AL change, and lens decentration. REGISTRATION NUMBER: This study is registered with the United States Clinical Trials Registry under registration number NCT04929119.

4.
Insect Mol Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956869

ABSTRACT

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm Bombyx mori UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.

5.
Biochem Biophys Res Commun ; 726: 150274, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38924882

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of ß-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aß deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Transgenic , Synbiotics , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/diet therapy , Alzheimer Disease/therapy , Alzheimer Disease/microbiology , Synbiotics/administration & dosage , Mice , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Presenilin-1/metabolism , Presenilin-1/genetics , Nicotinamide Mononucleotide/metabolism , Male , Dysbiosis/metabolism , Dysbiosis/microbiology , Dysbiosis/diet therapy , Dysbiosis/therapy
6.
Life Sci ; 351: 122768, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38851417

ABSTRACT

AIMS: Cancer-associated fibroblasts (CAFs) have been shown to promote the metastasis of head and neck squamous cell carcinoma (HNSCC), but the underlying mechanisms remain unclear. The purpose of this study is to identify gene in CAFs that are associated with metastasis and to preliminarily validate its impact on the metastasis of HNSCC. MATERIALS AND METHODS: Scissor analysis was utilized to process single-cell and bulk RNA sequencing datasets, identifying genes associated with the metastasis of HNSCC through differential gene expression analysis. A risk model was constructed using LASSO regression analysis. Quantitative real time-PCR and Western blot were employed to measure mRNA and protein expressions, respectively. Multiplex immunohistochemistry (mIHC) was used to assess protein expression in CAFs. siRNA was utilized to achieve gene knockdown. CCK-8 and Transwell assays were employed to evaluate the biological characteristics of HNSCC cells. KEY FINDINGS: Compare to the nonmetastatic primary CAFs (nmCAFs), tissue inhibitors of metalloproteinase-1 (TIMP1) was founded to be overexpressed in the cells and tissues of metastatic primary CAFs (mCAFs). Knocking down TIMP1 in CAFs can signifucantly inhibit the proliferation, invasion, and migration of HNSCC cells. SIGNIFICANCE: CAFs facilitate HNSCC cell metastasis by upregulating TIMP1, highlighting TIMP1 as a potential therapeutic target in HNSCC metastasis management.


Subject(s)
Cancer-Associated Fibroblasts , Head and Neck Neoplasms , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Tissue Inhibitor of Metalloproteinase-1 , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/secondary , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Single-Cell Analysis/methods , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Metastasis/genetics , Cell Movement/genetics , Sequence Analysis, RNA/methods , Male , Female
7.
AMB Express ; 14(1): 76, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942930

ABSTRACT

Rhizopus arrhizus is a saprotrophic, sometimes clinically- and industrially-relevant mold (Mucorales) and distributed worldwide, suggesting it can assimilate a broad spectrum of substrates. Here, 69 strains of R. arrhizus were investigated by using the Biolog FF MicroPlate for the profiles of utilizing 95 carbon and nitrogen substrates. The study showed that most R. arrhizus strains were similar in average well color development (AWCD) and substrate richness (SR). Nevertheless, 13 strains were unique in principal component analyses, heatmap, AWCD, and SR analyses, which may imply a niche differentiation within R. arrhizus. The species R. arrhizus was able to utilize all the 95 carbon and nitrogen substrates, consistent with the hypothesis of a great metabolic diversity. It possessed a substrate preference of alcohols, and seven substrates were most frequently utilized, with N-acetyl-D-galactosamine and L-phenylalanine ranking at the top of the list. Eight substrates, especially L-arabinose and xylitol, were capable of promoting sporulation and being applied for rejuvenating degenerated strains. By phenotyping R. arrhizus strains in carbon and nitrogen assimilation capacity, this study revealed the extent of intra-specific variability and laid a foundation for estimating optimum substrates that may be useful for industrial applications.

8.
Org Biomol Chem ; 22(24): 4993-5000, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38840509

ABSTRACT

A protocol for the synthesis of α-amino-vinylphosphine oxides by phosphinoenamination reaction between alkyl nitriles and phosphine oxides was developed. The combination of Mn(OAc)2 as a Lewis acid and guanidine as a Lewis base was found to be an efficient catalytic system for this reaction. A series of alkyl nitriles and phosphine oxides are compatible with this conversion, furnishing the desired products in up to 95% yield under mild conditions. Furthermore, this method demonstrates the capability of gram-scale synthesis.

9.
Article in English | MEDLINE | ID: mdl-38884655

ABSTRACT

Microalgae, compared to macroalgae, exhibit advantages such as rapid growth rates, feasible large-scale cultivation, and high fucoxanthin content. Among these microalgae, Phaeodactylum tricornutum emerges as an optimal source for fucoxanthin production. This paper comprehensively reviews the research progress on fucoxanthin production using Phaeodactylum tricornutum from 2012 to 2022, offering detailed insights into various aspects, including strain selection, media optimization, nutritional requirements, lighting conditions, cell harvesting techniques, extraction solvents, extraction methodologies, as well as downstream separation and purification processes. Additionally, an economic analysis is performed to assess the costs of fucoxanthin production from Phaeodactylum tricornutum, with a comparative perspective to astaxanthin production from Haematococcus pluvialis. Lastly, this paper discusses the current challenges and future opportunities in this research field, serving as a valuable resource for researchers, producers, and industry managers seeking to further advance this domain.

10.
Front Pharmacol ; 15: 1397784, 2024.
Article in English | MEDLINE | ID: mdl-38813105

ABSTRACT

Introduction: High prices, as a main factor, contributed to the lack of adequate access to essential anticancer medicines, especially for patients in developing countries. The Chinese Government has introduced a series of policies to control the prices of medicines during the last decade, but the effect on anticancer medicine is not yet clear. Methods: To evaluate the time trends and regional variation in the price of essential anticancer medicines in China, we used the procurement data of anticancer medicines from 2015 to 2022. We selected 29 anticancer medicines from the 2018 Chinese National Essential Medicines List. To measure the cost of a medicine, we used defined daily dose cost -the cost per defined daily doses. At national level, we focused on the price changes over time and compared the price between medicine categories. At provincial level, we assessed price variation among provinces over time. Results: For prices at the national level, all 6 targeted medicines exhibited a continuous decrease trend in price. Out of 23 non-targeted medicines, 4 (17·39%) experienced continuous increases in prices, and 9 (39·13%) showed price decreases from 2015 to 2019 and then an upward trend during 2019-2022; Of the remaining non-targeted medicines, 7 (30·43%) had continuous price decreases and 3 (13.04%) had price increases followed by decreases. For prices at the provincial level, provincial price variation became smaller for almost all targeted medicines, except rituximab; for 11 out of 23 non-targeted medicines, provincial price variations became larger. During the study period, the proportion of price-increased medicines in each province was geographically correlated, and no significant relationship between prices and GDP per capita was observed for both targeted and non-targeted anticancer medicines. Conclusion: The prices and regional disparity of most targeted anticancer medicines were decreasing, while for nearly half of the non-targeted anticancer medicines, the prices were increasing and the regional disparity became wider, which may lead to compromised access to these essential anticancer medicines and raise inequity health outcome among regions.

11.
MycoKeys ; 105: 203-216, 2024.
Article in English | MEDLINE | ID: mdl-38818111

ABSTRACT

In the present study, two new Conidiobolus s.s. species were described relying on the morphological studies and phylogenetic analysis utilizing nuclear large subunit of rDNA (nucLSU), mitochondrial small subunit of rDNA (mtSSU), and elongation-factor-like gene (EFL) sequences. Conidiobolusjiangxiensissp. nov. is distinguished by its short primary conidiophores, a feature not commonly observed in other Conidiobolus s.s. species. Conversely, Conidiobolusmarcoconidiussp. nov. is characterized by larger primary conidia and the emergence of 2-5 secondary conidia from each branched secondary conidiophores. Additionally, the taxonomic reassessment of C.polyspermus confirms its distinct status within the genus Conidiobolus s.s. Moreover, molecular analyses, incorporating the nucLSU, mtSSU, and EFL sequences, provide robust support for the phylogenetic placement of the two newly described species and the taxonomic identity of C.polyspermus. This investigation contributes valuable insights into the species diversity of Conidiobolaceae in China, enhancing our understanding of the taxonomy within this fungal family.

12.
Food Chem X ; 22: 101429, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38756466

ABSTRACT

Changes in physio-biochemical metabolism, phenolics and antioxidant capacity during germination were studied in eight different wheat varieties. Results showed that germination enhanced sprout growth, and caused oxidative damage, but enhanced phenolics accumulation. Ferulic acid and p-coumaric acid were the main phenolic acids in wheat sprouts, and dihydroquercetin, quercetin and vitexin were the main flavonoids. The phenolic acid content of Jimai 44 was the highest on the 2th and 4th day of germination, and that of Bainong 307 was the highest on the 6th day. The flavonoid content of Hei jingang was the highest during whole germination. The enzymes activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were up-regulated. The activities of catalase, polyphenol oxidase and peroxidase were also activated. Antioxidant capacity of wheat sprouts was enhanced. The results provided new ideas for the production of naturally sourced phenolic rich foods.

13.
J Inflamm Res ; 17: 2399-2426, 2024.
Article in English | MEDLINE | ID: mdl-38681071

ABSTRACT

Background: Dysregulated macrophages are important causes of Atherosclerosis (AS) formation and increased plaque instability, but the heterogeneity of these plaques and the role of macrophage subtypes in plaque instability have yet to be clarified. Methods: This study integrates single-cell and bulk-seq data to analyze atherosclerotic plaques. Unsupervised clustering was used to reveal distinct plaque subtypes, while survival analysis and gene set variation analysis (GSVA) methods helped in understanding their clinical outcomes. Enrichment of differential expression of macrophage genes (DEMGs) score and pseudo-trajectory analysis were utilized to explore the biological functions and differentiation stages of macrophage subtypes in AS progression. Additionally, CellChat and the BayesPrism deconvolution method were used to elucidate macrophage subtype interaction and their prognostic significance at single-cell resolution. Finally, the expression of biomarkers was validated in mouse experiments. Results: Three distinct AS plaque subtypes were identified, with cluster 3 plaque subtype being particularly associated with higher immune infiltration and poorer prognosis. The DEMGs score exhibited a significant elevation in three macrophage subtypes (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages), associated with cluster 3 plaque subtype and highlighted the prognostic significance of these subtypes. Activation trajectory of the macrophage subtypes is divided into three states (Pre-branch, Cell fate 1, and Cell fate 2), and Cell fate 2 (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages dominant) exhibiting the highest DEMGs score, distinct interactions with other cell components, and relating to poorer prognosis of ischemic events. This study also uncovered a unique SPP1+/VCAN+ macrophage subtype, rare in quantity but significant in influencing AS progression. Machine learning algorithms identified 10 biomarkers crucial for AS diagnosis. The validation of these biomarkers was performed using Mendelian Randomization analysis and in vitro methods, supporting their relevance in AS pathology. Conclusion: Our study provides a comprehensive view of AS plaque heterogeneity and the prognostic significance of macrophage subtypes in plaque instability.

14.
Diabetes Obes Metab ; 26(7): 2752-2760, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38618979

ABSTRACT

AIM: To assess the use of non-insulin antidiabetic medicines in China. MATERIALS AND METHODS: We analysed the national procurement data for 29 non-insulin antidiabetic medicines from nine subgroups in China from 2015 to 2022. We estimated the number of defined daily doses (DDDs) procured per year in seven regions of China for nine subgroups and adjusted the data by the number of patients with diabetes. For each subgroup, the regional ratio was calculated by comparing the procurement per patient in each region with the procurement nationwide. The regional disparity was the difference between the highest and lowest regional ratios. We compared the medication patterns across regions. RESULTS: Nationally, between 2015 and 2022, the number of DDDs per patient increased from 14.45 to 47.37. The two most commonly used categories were sulphonylurea and biguanides, which increased from 7.04 to 15.39 (119%) and 3.28 to 11.11 (239%) DDDs per patient, respectively. The procurement of new drugs (dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter type 2 inhibitors and glucagon-like peptide-1 receptor agonists) increased quickly and had >5000% relative changes. Particularly for sodium-glucose cotransporter type 2 inhibitors, it increased from 0.08 to 5.03 DDDs (6662%). The southwest region had the highest relative change (319%), while the southern region had the lowest (118%). Biguanide and thiazolidinediones had the lowest (1.19) and highest level (2.21) of regional disparity in 2022, respectively. CONCLUSION: The procurement of non-insulin antidiabetic medicines in China has increased a lot from 2015 to 2022. In terms of DDDs per patient, sulphonylurea ranked first, followed by metformin. The procurement of new drugs increased greatly. A large regional disparity existed in medicine usage and patterns.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Humans , China , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Biguanides/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Sulfonylurea Compounds/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Drug Utilization/trends , Drug Utilization/statistics & numerical data , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology
15.
Front Endocrinol (Lausanne) ; 15: 1342530, 2024.
Article in English | MEDLINE | ID: mdl-38586457

ABSTRACT

Introduction: The aim of this study was to better understand the efficacy of various drugs, such as glucocorticoids and anti-vascular endothelial growth factors (VEGF), in the treatment of diabetic macular edema (DME), and to evaluate various clinical treatment regimens consisting of different therapeutic measures. Methods: This study included randomized controlled trials up to February 2023 comparing the efficacy of corticosteroid-related therapy and anti-VEGF therapy. PubMed, the Cochrane Library, and Embase were searched, and the quality of the studies was carefully assessed. Finally, 39 studies were included. Results: Results at 3-month followup showed that intravitreal injection of bevacizumab (IVB) + triamcinolone acetonide (TA) was the most beneficial in improving best-corrected visual acuity and reducing the thickness of macular edema in the center of the retina in patients with DME. Results at 6-month follow-up showed that intravitreal dexamethasone (DEX) was the most effective in improving patients' bestcorrected visual acuity and reducing the thickness of central macular edema. Discussion: Overall, IVB+TA was beneficial in improving best-corrected visual acuity and reducing central macular edema thickness over a 3-month follow-up period, while DEX implants had a better therapeutic effect than anti-VEGF agents at 6 months, especially the patients with severe macular edema and visual acuity impaired. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=397100, identifier CRD42023397100.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Humans , Diabetes Mellitus/drug therapy , Diabetic Retinopathy/drug therapy , Glucocorticoids/therapeutic use , Macular Edema/drug therapy , Macular Edema/etiology , Randomized Controlled Trials as Topic , Triamcinolone Acetonide , Vascular Endothelial Growth Factor A
16.
Dev Comp Immunol ; 156: 105183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636699

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is the most important virus that threatens sericulture industry. At present, there is no effective treatment for BmNPV infection in silkworms, and lncRNA plays an important role in biological immune response and host-virus interaction, but there are relatively few studies in silkworms. In this study, the four midgut tissue samples of the resistance strain NB (NB) and susceptible strain 306 (306) and the NB and 306 continuously infected with BmNPV for 96 h are used for whole transcriptome sequencing to analyze the differences in the genetic background of NB and 306 and the differences after inoculation of BmNPV, and the significantly different mRNA, miRNA and lnRNA between NB and 306 after BmNPV inoculation were screened. By comparing NB and 306, 2651 significantly different mRNAs, 57 significantly different miRNAs and 198 significantly different lncRNAs were screened. By comparing NB and 306 after BmNPV inoculation, 2684 significantly different mRNAs, 39 significantly different miRNAs and 125 significantly different lncRNAs were screened. According to the significantly different mRNA, miRNA and lncRNA screened from NB and 306 and NB and 306 after virus inoculation, the mRNA-miRNA-lncRNA regulatory network was constructed before and after virus inoculation, and the BmBCAT-Bomo_chr7_8305-MSTRG.3236.2 regulatory axis was screened from them, and it was found that BmBCAT was not Bomo_chr7_8305 regulated in the genetic background, after viral infection, MSTRG.3236.2 competes for binding Bomo_chr7_8305 regulates BmBCAT. The whole transcriptome sequencing results were verified by qPCR and the time-series expression analysis was performed to prove the reliability of the regulatory network. The BmBCAT-Bomo_chr7_8305-MSTRG.3236.2 regulatory axis may play a potential role in the interaction between silkworms and BmNPV. These results provide new insights into the interaction mechanism between silkworms and BmNPV.


Subject(s)
Bombyx , MicroRNAs , Nucleopolyhedroviruses , RNA, Long Noncoding , Transaminases , Bombyx/virology , Bombyx/immunology , Bombyx/genetics , Animals , Nucleopolyhedroviruses/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transaminases/metabolism , Transaminases/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Amino Acids, Branched-Chain/metabolism , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Transcriptome
17.
Front Microbiol ; 15: 1346252, 2024.
Article in English | MEDLINE | ID: mdl-38486702

ABSTRACT

The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.

18.
Biomolecules ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397469

ABSTRACT

The role of Pleckstrin homology-like domain family B member 2 (PHLDB2) in the regulation of cell migration has been extensively studied. However, the exploration of PHLDB2 in head and neck squamous cell carcinoma (HNSCC) is still limited in terms of expression, function, and therapeutic potential. In this study, we discovered an upregulation of PHLDB2 expression in HNSCC tissues which was correlated with a negative prognosis in patients with HNSCC. Additionally, we determined that a high level of expression of PHLDB2 is crucial for maintaining cell migration through the regulation of the epithelial-mesenchymal transition (EMT). Furthermore, we demonstrated that the ablation of PHLDB2 in tumor cells inhibited tumorigenicity in a C3H syngeneic tumor-bearing mouse model. Mechanistically, PHLDB2 was found to be involved in the regulation of T cell anti-tumor immunity, primarily by enhancing the activation and infiltration of CD8+ T cells. In light of these findings, PHLDB2 emerges as a promising biomarker and therapeutic target for interventions in HNSCC.


Subject(s)
Head and Neck Neoplasms , Animals , Mice , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , CD8-Positive T-Lymphocytes , Mice, Inbred C3H , Epithelial-Mesenchymal Transition/physiology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Carrier Proteins
19.
J Agric Food Chem ; 72(8): 4142-4154, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38355398

ABSTRACT

The purpose of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on dextran sulfate sodium (DSS)-induced colitis in mice. The present data demonstrated that oral administration of Fx (50 and 200 mg/kg body weight/day) for 36 days significantly alleviated the severity of colitis in DSS-treated mice, as evidenced by attenuating body weight loss, bloody stool, diarrhea, shortened colon length, colonic epithelium distortion, a thin mucus layer, goblet cell depletion, damaged crypts, and extensive infiltration of inflammatory cells in the colonic mucosa. Additionally, Fx notably relieved DSS-induced intestinal epithelial barrier dysfunction via maintaining the tight junction function and preventing excessive apoptosis of colonic epithelial cells. Moreover, Fx effectively diminished colonic inflammation and oxidative stress in DSS-treated mice, and its mechanisms might be due to blunting the activation of NF-κB and NLRP3 inflammasome signaling pathways. Furthermore, Fx also modulates DSS-induced gut microbiota dysbiosis via recovering the richness and diversity of gut microbiota and reshaping the structure of gut microbiota, such as increasing the Firmicutes and Bacteroidota (F/B) ratio and elevating the relative abundance of some potential beneficial bacteria, including Lactobacillaceae and Lachnospiraceae. Overall, Fx might be developed as a promising functional ingredient to prevent colitis and maintain intestinal homeostasis.


Subject(s)
Colitis , Gastrointestinal Microbiome , Xanthophylls , Mice , Animals , Dextran Sulfate/adverse effects , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/metabolism , Mice, Inbred C57BL , Disease Models, Animal
20.
Chem Biol Drug Des ; 103(1): e14425, 2024 01.
Article in English | MEDLINE | ID: mdl-38082476

ABSTRACT

The pneumonia outbreak caused by Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infection poses a serious threat to people worldwide. Although vaccines have been developed, antiviral drugs are still needed to combat SARS-CoV-2 infection due to the high mutability of the virus. SARS-CoV-2 main protein (Mpro ) is a special cysteine protease that is a key enzyme for SARS-CoV-2 replication. It is encoded by peptides and is responsible for processing peptides into functional proteins, making it an important drug target. The paper reviews the structure and peptide-like inhibitors of SARS-CoV-2 Mpro , also the binding mode and structure-activity relationship between the inhibitors and Mpro are introduced in detail. It is hoped that this review can provide ideas and help for the development of anti-coronavirus drugs such as COVID-19, and help to develop broad-spectrum antiviral drug for the treatment of coronavirus diseases as soon as possible.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/pharmacology , Protease Inhibitors/metabolism , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL