Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Biomed Pharmacother ; 175: 116705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713949

ABSTRACT

Currently, the drugs used in clinical to treat psoriasis mainly broadly suppress cellular immunity. However, these drugs can only provide temporary and partial symptom relief, they do not cure the condition and may lead to recurrence or even serious toxic side effects. In this study, we describe the discovery of a novel potent CDK8 inhibitor as a treatment for psoriasis. Through structure-based design, compound 46 was identified as the most promising candidate, exhibiting a strong inhibitory effect on CDK8 (IC50 value of 57 nM) along with favourable inhibition against NF-κB. Additionally, it demonstrated a positive effect in an in vitro psoriasis model induced by TNF-α. Furthermore, this compound enhanced the thermal stability of CDK8 and exerted evident effects on the biological function of CDK8, and it had favourable selectivity across the CDK family and tyrosine kinase. This compound showed no obvious inhibitory effect on CYP450 enzyme. Further studies confirmed that compound 46 exhibited therapeutic effect on IMQ-induced psoriasis, alleviated the inflammatory response in mice, and enhanced the expression of Foxp3 and IL-10 in the dorsal skin in vivo. This discovery provides a new strategy for developing selective CDK8 inhibitors with anti-inflammatory activity for the treatment of psoriasis.


Subject(s)
Cyclin-Dependent Kinase 8 , Protein Kinase Inhibitors , Psoriasis , Animals , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Psoriasis/drug therapy , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Mice , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Pyridines/pharmacology , Pyridines/chemistry , Mice, Inbred BALB C , Interleukin-10/metabolism , Male , Pyrroles/pharmacology , Pyrroles/chemistry , Forkhead Transcription Factors/metabolism , Drug Discovery/methods , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Disease Models, Animal , Skin/drug effects , Skin/pathology , Skin/metabolism
2.
J Enzyme Inhib Med Chem ; 39(1): 2305852, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38258519

ABSTRACT

It has been reported that CDK8 plays a key role in acute myeloid leukaemia. Here, a total of 40 compounds were rational designed and synthesised based on the previous SAR. Among them, compound 12 (3-(3-(furan-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide) showed the most potent inhibiting activity against CDK8 with an IC50 value of 39.2 ± 6.3 nM and anti AML cell proliferation activity (molm-13 GC50 = 0.02 ± 0.01 µM, MV4-11 GC50 = 0.03 ± 0.01 µM). Mechanistic studies revealed that this compound 12 could inhibit the phosphorylation of STAT-1 and STAT-5. Importantly, compound 12 showed relative good bioavailability (F = 38.80%) and low toxicity in vivo. This study has great significance for the discovery of more efficient CDK8 inhibitors and the development of drugs for treating AML in the future.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Biological Availability , Leukemia, Myeloid, Acute/drug therapy , Phosphorylation , Cyclin-Dependent Kinase 8
3.
Acta Pharmacol Sin ; 45(3): 558-569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37903897

ABSTRACT

Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.


Subject(s)
Diabetes Mellitus , Diabetic Angiopathies , Rats , Mice , Animals , Copper/metabolism , Copper/pharmacology , Up-Regulation , Endothelial Cells/metabolism , Epigenesis, Genetic , Cells, Cultured , Diabetic Angiopathies/etiology , Glucose/metabolism , Endothelium, Vascular
4.
Fitoterapia ; 173: 105788, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141880

ABSTRACT

As our ongoing searching for the bioactive natural terpenoids, nine ent-kauranoids (1-9), including three previously undescribed ones (1, 2, and 9), were isolated from the aerial parts of Isodon amethystoides. Their structures were elucidated on the basis of spectroscopic data analysis, including NMR, MS, and ECD. Compounds 1 and 2 were a pair of tautomeric compounds, which was confirmed by the HPLC analysis and low temperature NMR testing. The underlying mechanism of the tautomer was proposed as an intramolecular SN2 reaction, which was explained by quantum chemical calculation. The HOMO-LUMO gap and the free energy revealed the spontaneous of the tautomeric of the 1 and 2. Additionally, the similar phenomena were also found in the two groups of known compounds 3 and 4 and 6 and 7, respectively. Apart from the tautomer, compounds 3 and 4 can be hydrolyzed into 5 through ester hydrolysis in CDCl3, while compounds 6, 7 can be hydrolyzed into 8 through ester hydrolysis. These phenomena were also confirmed through HPLC analysis and low temperature nuclear magnetic resonance tests and the mechanism was studied using quantum chemical calculation.


Subject(s)
Antineoplastic Agents, Phytogenic , Diterpenes, Kaurane , Isodon , Molecular Structure , Isodon/chemistry , Plant Components, Aerial/chemistry , Esters , Drug Screening Assays, Antitumor
5.
ACS Nano ; 17(24): 24947-24960, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38055727

ABSTRACT

Cancer vaccines have been considered to be an alternative therapeutic strategy for tumor therapy in the past decade. However, the popularity and efficacy of cancer vaccines were hampered by tumor antigen heterogeneity and the impaired function of cross-presentation in the tumor-infiltrating dendritic cells (TIDCs). To overcome these challenges, we engineered an in situ nanovaccine (named as TPOP) based on lipid metabolism-regulating and innate immune-stimulated nanoparticles. TPOP could capture tumor antigens and induce specific recognition by TIDCs to be taken up. Meanwhile, TPOP could manipulate TIDC lipid metabolism and inhibit de novo synthesis of fatty acids, thus improving the ability of TIDCs to cross-present by reducing their lipid accumulation. Significantly, intratumoral injection of TPOP combined with pretreatment with doxorubicin showed a considerable therapeutic effect in the subcutaneous mouse colorectal cancer model and melanoma model. Moreover, in combination with immune checkpoint inhibitors, such TPOP could markedly inhibit the growth of distant tumors by systemic antitumor immune responses. This work provides a safe and promising strategy for improving the function of immune cells by manipulating their metabolism and activating the immune system effectively for in situ cancer vaccines.


Subject(s)
Cancer Vaccines , Melanoma , Nanoparticles , Neoplasms , Mice , Animals , Nanovaccines , Dendritic Cells , Lipid Metabolism , Immunotherapy , Neoplasms/drug therapy , Melanoma/drug therapy , Antigens, Neoplasm/metabolism , Disease Models, Animal
6.
bioRxiv ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577656

ABSTRACT

Spinal cord injury (SCI) results in severe atrophy of skeletal muscle in paralyzed regions, and a decrease in the force generated by muscle per unit of cross-sectional area. Oxidation of skeletal muscle ryanodine 1 receptors (RyR1) reduces contractile force due to reduced binding of calstabin 1 to RyR1 together with altered gating of RyR1. One cause of RyR1 oxidation is NADPH oxidase 4 (Nox4). We have previously shown that in rats, RyR1 was oxidized and bound less calstabin 1 at 56 days after spinal cord injury (SCI) by transection. Here, we used a conditional knock-out mouse model of Nox4 in muscle to investigate the role of Nox4 in reduced muscle specific force after SCI. Peak twitch force in control mice after SCI was reduced by 42% compared to sham-operated controls but was increased by approximately 43% in SCI Nox4 conditional KO mice compared to SCI controls although it remained less than that for sham-operated controls. Unlike what observed in rats, after SCI the expression of Nox4 was not increased in gastrocnemius muscle and binding of calstabin 1 to RyR1 was not reduced in this muscle. The results suggest a link between Nox4 expression in muscle tissue and reduction in muscle twitch force, however further studies are needed to understand the mechanistic basis for this linkage.

7.
Natl Sci Rev ; 10(7): nwad142, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37426486

ABSTRACT

Attempting to couple photochemical CO2 reduction with N2 fixation is usually difficult, because the reaction conditions for these two processes are typically incompatible. Here, we report that a light-driven biohybrid system can utilize abundant, atmospheric N2 to produce electron donors via biological nitrogen fixation, to achieve effective photochemical CO2 reduction. This biohybrid system is constructed by incorporating molecular cobalt-based photocatalysts into N2-fixing bacteria. It is found that N2-fixing bacteria can convert N2 into reductive organic nitrogen and create a localized anaerobic environment, which allows the incorporated photocatalysts to continuously perform photocatalytic CO2 reduction under aerobic conditions. Specifically, the light-driven biohybrid system displays a high formic acid production rate of over 1.41 × 10-14 mol h-1 cell-1 under visible light irradiation, and the organic nitrogen content undergoes an over-3-fold increase within 48 hours. This work offers a useful strategy for coupling CO2 conversion with N2 fixation under mild and environmentally benign conditions.

8.
ACS Nano ; 17(13): 12471-12482, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37364286

ABSTRACT

Calcium ion therapy is a potential anticancer treatment. However, the cellular calcium-buffering mechanism limited the effectiveness of calcium ion therapy. Here, we constructed a mineralized porphyrin metal-organic framework (PCa) to produce calcium ions and reactive oxygen species (ROS), which destroyed cell calcium buffering capacity and amplified the cell damage caused by calcium overload. In addition, PCa could induce cell immunogenic death to release tumor-associated antigen (TAA) and be used as an adjuvant. Thus, PCa could increase DC maturation and promote the antitumor activity of CD8+ T cells. For mice experiment, PCa not only showed excellent tumor elimination on the subcutaneous breast tumor but also achieved obvious antimetastasis effect in the metastatic tumor model. This nanosystem could eliminate the primary tumor and boost effective antitumor immunotherapy for comprehensive anticancer treatment.


Subject(s)
Mammary Neoplasms, Animal , Metal-Organic Frameworks , Neoplasms , Animals , Mice , Metal-Organic Frameworks/pharmacology , CD8-Positive T-Lymphocytes , Calcium , Neoplasms/therapy , Immunotherapy , Cell Line, Tumor
9.
Nano Lett ; 23(10): 4375-4383, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37159332

ABSTRACT

Microorganism-mediated self-assembling of living formulations holds great promise for disease therapy. Here, we constructed a prebiotic-probiotic living capsule (PPLC) by coculturing probiotics (EcN) with Gluconacetobacter xylinus (G. xylinus) in a prebiotic-containing fermentation broth. Through shaking the culture, G. xylinus secretes cellulose fibrils that can spontaneously encapsulate EcN to form microcapsules under shear forces. Additionally, the prebiotic present in the fermentation broth is incorporated into the bacterial cellulose network through van der Waals forces and hydrogen bonding. Afterward, the microcapsules were transferred to a selective LB medium, which facilitated the colonization of dense probiotic colonies within them. The in vivo study demonstrated that PPLC-containing dense colonies of EcN can antagonize intestinal pathogens and restore microbiota homeostasis by showing excellent therapeutic performance in treating enteritis mice. The in situ self-assembly of probiotics and prebiotics-based living materials provides a promising platform for the treatment of inflammatory bowel disease.


Subject(s)
Inflammatory Bowel Diseases , Prebiotics , Animals , Mice , Capsules , Coculture Techniques , Cellulose
10.
Biomaterials ; 296: 122072, 2023 05.
Article in English | MEDLINE | ID: mdl-36878091

ABSTRACT

Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.


Subject(s)
Alcoholic Intoxication , Antidotes , Mice , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Blood Alcohol Content , Ethanol/pharmacology , Liver , Aldehyde Dehydrogenase/pharmacology
11.
Eur J Med Chem ; 251: 115214, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36889252

ABSTRACT

CDK8 plays a key role in acute myeloid leukemia, colorectal cancer and other cancers. Here, a total of 54 compounds were designed and synthesized. Among them, the most potent one compound 43 (3-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide), a novel CDK8 Ⅰ inhibitor, showed strong inhibitory activity against CDK8 (IC50 = 51.9 nM), good kinase selectivity, good anti AML cell proliferation activity (molm-13 GC50 = 1.57 ± 0.59 µM) and low toxicity in vivo (acute toxicity: 2000 mg/kg). Further mechanistic studies revealed that this compound could target CDK8 and then phosphorylate STAT-1 and STAT-5 thereby inhibiting of AML cell proliferation. In addition, compound 43 showed relatively good bioavailability (F = 28.00%) and could inhibit the growth of AML tumors in a dose-dependent manner in vivo. This study facilitates the further development of more potent CDK8 inhibitors for the treatment of the AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Cell Proliferation , Pyrazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase 8
12.
Dis Aquat Organ ; 153: 87-93, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36951257

ABSTRACT

Myxobolus zhaltsanovae n. sp., is described from the gills of gibel carp Carassius gibelio found during a survey of myxozoans from the watershed of Lake Baikal, Russia, based on morphological and molecular characterizations. Plasmodia of M. zhaltsanovae n. sp. develop extravascularly and measure 500-1000 µm long, 25-100 µm wide. The myxospore is circular to oval, measuring 13.23 ± 0.09 (11.3-14.8) µm (mean ± SD, range) in length, 10.19 ± 0.07 (9.1-11.4) µm in width, and 6.49 ± 0.12 (5.4-7.2) µm in thickness. Polar capsules are unequal and subspherical; measurements of polar capsules are: length 5.62 ± 0.06 (4.7-6.7), width 3.44 ± 0.04 (2.4-4.4) µm and length 3.42 ± 0.05 (2.5-4.1), width 1.94 ± 0.04 (1.3-3.3) µm. Phylogenetic analysis with the 18S rDNA gene shows M. zhaltsanovae n. sp. as a sister species of the subclade formed by M. musseliusae, M. tsangwuensis, and M. basilamellaris, which infect common carp Cyprinus carpio.


Subject(s)
Carps , Cnidaria , Cyprinidae , Cypriniformes , Fish Diseases , Myxobolus , Myxozoa , Parasitic Diseases, Animal , Animals , Myxobolus/genetics , Phylogeny , Capsules , Parasitic Diseases, Animal/epidemiology , Gills
13.
Int J Med Sci ; 20(3): 376-384, 2023.
Article in English | MEDLINE | ID: mdl-36860669

ABSTRACT

Skeletal muscle undergoes rapid and extensive atrophy following nerve transection though the underlying mechanisms remain incompletely understood. We previously showed transiently elevated Notch 1 signaling in denervated skeletal muscle that was abrogated by administration of nandrolone (an anabolic steroid) combined with replacement doses of testosterone. Numb is an adaptor molecule present in myogenic precursors and skeletal muscle fibers that is vital for normal tissue repair after muscle injury and for skeletal muscle contractile function. It is unclear whether the increase in Notch signaling observed in denervated muscle contributes to denervation and whether expression of Numb in myofibers slows denervation atrophy. To address these questions, the degree of denervation atrophy, Notch signaling, and Numb expression was studied over time after denervation in C57B6J mice treated with nandrolone, nandrolone plus testosterone or vehicle. Nandrolone increased Numb expression and reduced Notch signaling. Neither nandrolone alone nor nandrolone plus testosterone changed the rate of denervation atrophy. We next compared rates of denervation atrophy between mice with conditional, tamoxifen-inducible knockout of Numb in myofibers and genetically identical mice treated with vehicle. Numb cKO had no effect on denervation atrophy in this model. Taken together, the data indicate that loss of Numb in myofibers does not alter the course of denervation atrophy and that upregulation of Numb and blunting of the denervation-atrophy induced activation of Notch do not change the course of denervation atrophy.


Subject(s)
Muscle, Skeletal , Nandrolone , Animals , Mice , Testosterone , Atrophy , Denervation , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
14.
Eur J Appl Physiol ; 123(3): 479-493, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36305973

ABSTRACT

The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.


Subject(s)
Electric Stimulation Therapy , Resistance Training , Spinal Cord Injuries , Humans , Baclofen/metabolism , Resistance Training/methods , Proto-Oncogene Proteins c-akt/metabolism , Retrospective Studies , Muscle, Skeletal/physiology , Muscle Spasticity , Spinal Cord Injuries/metabolism , Hypertrophy/pathology , Electric Stimulation Therapy/methods
15.
Ann N Y Acad Sci ; 1517(1): 203-212, 2022 11.
Article in English | MEDLINE | ID: mdl-36072988

ABSTRACT

Citrate is an indispensable component of bone. Reduced levels of citrate in bone and serum are reported in the elderly and in osteoporosis patients. Myostatin (Mstn) is implicated in skeletal homeostasis, but its effects on osteogenesis remain incompletely understood. Nox4 has critical roles in bone homeostasis. TGF-ß/Mstn-associated Smad2/3 signaling has been linked to Nox4 expression. Insulin-like growth factor (IGF-1) has been shown to counteract many regulatory effects of Mstn. However, the crosstalk among Mstn, IGF-1, and Nox4 is not well understood; the interactive effects of those factors on citrate secretion, osteogenic differentiation, and bone remodeling remain unclear. In this study, we demonstrated that osteogenic differentiation induced an IGF-1-dependent upregulation of citrate secretion that was suppressed by Mstn. Inhibition of Nox4 prevented Mstn-induced reduction of citrate secretion. In addition, Mstn reduced bone nodule formation; these changes were prevented by Nox4 inhibition. Moreover, Mstn increased the ratio of RANKL to OPG mRNAs to favor osteoclast activation. These results indicate that Mstn negatively regulates osteogenesis by increasing levels of Nox4, which reduced IGF-1 expression, citrate secretion, and bone mineralization while also altering the RANKL to OPG ratio. These findings provide new and highly relevant insights into the osseous effects of myostatin.


Subject(s)
Mesenchymal Stem Cells , Myostatin , Mice , Animals , Myostatin/metabolism , Myostatin/pharmacology , Insulin-Like Growth Factor I/metabolism , Osteogenesis , NADP/metabolism , Mesenchymal Stem Cells/metabolism , Citrates/metabolism , Oxidoreductases/metabolism , Muscle, Skeletal/metabolism
16.
J Med Chem ; 65(18): 12095-12123, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36068975

ABSTRACT

Few targeted drugs were approved for treatment of colorectal cancer (CRC). Cyclin-dependent kinase 8 played a vital role in regulating transcription and was a key colorectal oncogene associated to colorectal cancer. Here, through de novo drug design and in depth structure-activity relationship analysis, title compound 22, (3-(3-(1H-pyrrolo[2,3-b]pyridin-5-yl)phenyl)-N-(4-methyl-3-(trifluoromethyl)phenyl)propenamide), was discovered as a potent type II CDK8 inhibitor, which exhibited potent kinase activity with an IC50 value of 48.6 nM and could significantly inhibit tumor growth in xenografts of CRC in vivo. Further mechanism studies indicated that it could target CDK8 to indirectly inhibit ß-catenin activity, which caused downregulation of the WNT/ß-catenin signal and inducing cell cycle arrest in G2/M and S phases. More importantly, the title compound exhibited low toxicity with good bioavailability (F = 39.8%). These results could provide the reference for design of new type II CDK8 inhibitors against colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinase 8 , Drug Design , Heterografts/chemistry , Heterografts/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship , beta Catenin/metabolism
17.
J Med Chem ; 65(19): 13216-13239, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36126227

ABSTRACT

CDK8 is a transcriptional cyclin-dependent kinase and considered as a potential target in colon cancer therapeutics. Here, a novel selective CDK8 inhibitor was identified against colon cancer in vivo. Specifically, based on the structural information of the sorafenib-bound CDK8 structure, a series of novel 2-amino-pyridine derivatives were designed, synthesized, and evaluated. Among them, compound 29 showed strong inhibitory activity against CDK8 with an IC50 value of 46 nM and favorable selectivity. And there is an apparent interaction between the endogenous or overexpressed CDK8 and biotinylated-29. This compound exhibited antiproliferation potency on colon cancer cell lines with a high CDK8 expression level, suppressed the activation of WNT/ß-catenin and transcriptional activity of the TCF family, and induced G1 phase arrested in HCT-116 cells. In addition, this compound showed potent activity against sorafenib-resistant HCT-116 cells. What's more, it exhibited low toxicity and suitable pharmacokinetic (PK) profiles and showed preferable antitumor effects in vivo.


Subject(s)
Colonic Neoplasms , beta Catenin , Cell Line, Tumor , Colonic Neoplasms/pathology , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Sorafenib , beta Catenin/metabolism
18.
Mater Horiz ; 9(11): 2824-2834, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36039967

ABSTRACT

Absorbable sutures have moved to the forefront in surgical fields with a huge market. Antibacterial activity is one indispensable feature for the next generation of absorbable sutures. This study develops a simple and cost-effective coating method to endow sutures with staged control over antibacterial actions to achieve enhanced dual stages of the wound healing process. This method is achieved in aqueous solution under mild conditions without the usage of any organic solvent and reserves the fundamental properties of suture materials, based on the pH-dependent reversible self-polymerization of tannic acid (TA) together with the strong adhesion of poly (tannic acid) (PTA) not only toward the suture surface but also with TA. Just by changing pH of TA solution, a hybrid coating (MPTA) composed of PTA and TA could be readily formed on the commercialized sutures originating from synthetic and natural materials. In the initial post-surgery stage, wound sites are susceptible to aseptic and/or bacterial inflammation. The resulting acid conditions induce burst release of antibacterial TA mostly coming from the adsorbed TA monomer. In the later stage, TA release is tailored totally depending on the pH conditions determined by the healing degree of wounds, allowing the sustained antibacterial prevention in a biologically adjustable manner. Thus, antibacterial MPTA coating meets the rigid requirements that differ distinctly during two major wound healing stages. Nontoxic MPTA coating on sutures leads to excellent post-implantation outcomes regarding bacterial prevention/elimination, anti-inflammation, tissue repair and wound healing. Moreover, MPTA coating provides sutures with a robust platform for functional expansion due to the matrix-independent adhesive ability of PTA.


Subject(s)
Sutures , Wound Healing , Anti-Bacterial Agents/pharmacology , Bacteria , Tannins/pharmacology
19.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3242-3250, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851117

ABSTRACT

This study established a method for simultaneous determination of 11 neurotransmitters, such as acetylcholine, glutamic acid, glycine, and norepinephrine from rat brain microdialysis samples using UPLC-MS/MS. A total of 20 µL of rat brain dialysate was diluted with 60 µL of acetonitrile-water(4∶1) and centrifuged for 10 min at 10 000 r·min~(-1),and 5 µL was injected into UPLC-MS/MS system for assay. Chromatographic separation was performed on a Waters ACQUITY BEH amide column(2.1 mm×100 mm, 1.7 µm) with gradient elution using acetonitrile/0.2% formic acid-water as mobile phases with a flow rate of 0.35 mL·min~(-1) and column temperature of 35 ℃. The eluate was detected by multiple-reaction monitoring(MRM) scanning with an electrospray ionization source operating in the positive ionization mode with an analysis duration of 3.5 min. The relationship between the recovery rate of 11 neurotransmitters and the perfusion rate or the concentration of neurotransmitters was investigated. Furthermore, the effects of puerarin alone or combined with borneol on the content of 11 neurotransmitters in the striatum of rats were investigated. The results showed the calibration curves displayed good linear regression with coefficients all greater than 0.99 and the lower limit of quantification(LLOQ) less than 12.5 nmol·L~(-1) for each analyte. The within-run and between-run precision(RSD) of the 11 neurotransmitters at low, medium, and high levels was less than 9.3%, and the relative error of the accuracy ranged from-8.4% to 9.5%. The stability, recovery, and matrix effects were in line with the biological sample analysis requirements. As revealed by experimental results, the levels of most neurotransmitters in the brain striatum changed significantly after rats were treated with puerarin as compared with the conditions in the blank group. Except for dopamine and norepinephrine, the degree of changes of other neurotransmitters in the combination group(borneol and puerarin) was less than that of the puerarin group. The established UPLC-MS/MS method could be applied to the quantitative determination of 11 neurotransmitters in microdialysis samples, providing an efficient and useful tool to study neurotransmitter changes in animal models of health and diseases.


Subject(s)
Neurotransmitter Agents , Tandem Mass Spectrometry , Acetonitriles , Animals , Brain , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Microdialysis , Norepinephrine , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tandem Mass Spectrometry/methods , Water
20.
Am J Ophthalmol ; 241: 238-247, 2022 09.
Article in English | MEDLINE | ID: mdl-35640736

ABSTRACT

PURPOSE: To compare submandibular gland (SMG) transplantation with minor salivary gland (MSG) transplantation for the treatment of different dry eye diseases (DED). DESIGN: Retrospective clinical cohort study. METHODS: A total of 73 refractory DED eyes were divided into 3 groups. Group A comprised 35 end-stage DED eyes that underwent SMG transplantation. Group B comprised 20 end-stage DED eyes with MSG transplantation. Group C comprised 18 non-end-stage DED eyes with MSG transplantation. Schirmer test (ST), tear break-up time (TBUT), corneal fluorescein staining (FL), and best-corrected visual acuity (BCVA) were measured before and after surgery. RESULTS: Hospital length of stay, length of operation, and hospital fee were significantly higher in group A than in group B or C. Eyes in group A showed the most severe DED disease, with preoperative ST, TBUT, FL, and BCVA of 0.36 mm per 5 minutes, 0.03 seconds, 10.97, and 0.11, respectively, which improved significantly to 20.23 mm per 5minutes, 1.74 seconds, 7.58, and 0.2 at >2-year follow-up. Group B had similar baseline data, and significant but limited improvement only in the ST (0.55 mm per 5 minutes to 3.79 mm per 5 minutes) and FL (11.10 to 9.58) after the operation. Group C had better baseline ST, TBUT, FL, and BCVA of 0.89 mm per 5min, 3.49 seconds, 1.83, and 0.81, respectively, which improved significantly (except for BCVA) to 9.35 mm per 5min, 9.08 s, 0.53, and 0.89 after MSG transplantation. CONCLUSION: SMG transplantation could be recommended to treat end-stage refractory DED. MSG transplantation may provide satisfying results for refractory DED with relatively less severe impairment of the eye.


Subject(s)
Dry Eye Syndromes , Submandibular Gland , Humans , Cohort Studies , Dry Eye Syndromes/surgery , Retrospective Studies , Salivary Glands, Minor , Submandibular Gland/surgery , Tears
SELECTION OF CITATIONS
SEARCH DETAIL
...