Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
iScience ; 27(3): 109270, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487014

ABSTRACT

Glioblastoma stem cells (GSCs) reside in hypoxic periarteriolar niches of glioblastoma micro-environment, however, the crosstalk of GSCs with macrophages on regulating tumor angiogenesis and progression are not fully elucidated. GSCs-derived exosomes (GSCs-exos) are essential mediators during tumor immune-microenvironment remodeling initiated by GSCs, resulting in M2 polarization of tumor-associated macrophages (TAMs) as we reported previously. Our data disclosed aberrant upregulation of miR-374b-3p in both clinical glioblastoma specimens and human cell lines of GSCs. MiR-374b-3p level was high in GSCs-exos and can be internalized by macrophages. Mechanistically, GSCs exosomal miR-374b-3p induced M2 polarization of macrophages by downregulating phosphatase and tensin expression, thereby promoting migration and tube formation of vascular endothelial cells after coculture with M2 macrophages. Cumulatively, these data indicated that GSCs exosomal miR-374b-3p can enhance tumor angiogenesis by inducing M2 polarization of macrophages, as well as promote malignant progression of glioblastoma. Targeting exosomal miR-374b-3p may serve as a potential target against glioblastoma.

2.
CNS Neurosci Ther ; 30(2): e14599, 2024 02.
Article in English | MEDLINE | ID: mdl-38332576

ABSTRACT

BACKGROUND: Glioblastoma is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against glioblastoma. Nevertheless, the therapeutic efficacy of TMZ appears to be remarkably limited, because of low cytotoxic efficiency against glioblastoma. Besides, various mechanical studies and the corresponding strategies fail to enhancing TMZ curative effect in clinical practice. Our previous studies have disclosed remodeling of glial cells by GSCs, but the roles of these transformed cells on promoting TMZ resistance have never been explored. METHODS: Exosomes were extracted from GSCs culture through standard centrifugation procedures, which can activate transformation of normal human astrocytes (NHAs) totumor-associated astrocytes (TAAs) for 3 days through detect the level of TGF-ß, CD44 and tenascin-C. The secretive protein level of ALKBH7 of TAAs was determined by ELISA kit. The protein level of APNG and ALKBH7 of GBM cells were determined by Western blot. Cell-based assays of ALKBH7 and APNG triggered drug resistance were performed through flow cytometric assay, Western blotting and colony formation assay respectively. A xenograft tumor model was applied to investigate the function of ALKBH7 in vivo. Finally, the effect of the ALKBH7/APNG signaling on TMZ resistance were evaluated by functional experiments. RESULTS: Exosomes derived from GSCs can activate transformation of normal human astrocytes (NHAs)to tumor-associated astrocytes (TAAs), as well as up-regulation of ALKBH7expression in TAAs. Besides, TAAs derived ALKBH7 can regulate APNG gene expression of GBM cells. After co-culturing with TAAs for 5 days, ALKBH7 and APNG expression in GBM cells were elevated. Furthermore, Knocking-down of APNG increased the inhibitory effect of TMZ on GBM cells survival. CONCLUSION: The present study illustrated a new mechanism of glioblastoma resistance to TMZ, which based on GSCs-exo educated TAAs delivering ALKBH7 to enhance APNG expression of GBM cells, which implied that targeting on ALKBH7/APNG regulation network may provide a new strategy of enhancing TMZ therapeutic effects against glioblastoma.


Subject(s)
Brain Neoplasms , Exosomes , Glioblastoma , Adult , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/pathology , Astrocytes/metabolism , Exosomes/metabolism , Stem Cells/metabolism , Brain Neoplasms/genetics , Drug Resistance, Neoplasm , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , AlkB Enzymes , Mitochondrial Proteins
3.
iScience ; 27(2): 108950, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327797

ABSTRACT

T-box transcription factor 15 (TBX15) plays important role in various cancers; however, its expression and role in glioma is still unclear. In this study, our findings indicated that TBX15 was increased in gliomas compared to normal brain tissues, and high levels of TBX15 were related to poor survival. Furthermore, TBX15 silencing in glioma cells not only inhibited their proliferation, migration, and invasion in vitro, but also weakened their ability to recruit macrophages and polarize the latter to the M2 subtype. Mechanism study indicated that thioredoxin domain containing 5 (TXNDC5) lies downstream of TBX15. Furthermore, rescue assays verified that the role of TBX15 in glioma cells is dependent on TXNDC5. Moreover, sh-TBX15 loaded into DNA origami nanocarrier suppressed the malignant phenotype of glioma in vitro and in vivo. Taken together, the TBX15/TXNDC5 axis is involved in the genesis and progression of glioma, and is a potential therapeutic target.

4.
Cell Death Discov ; 10(1): 71, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341418

ABSTRACT

Abnormal lipid metabolism is an essential hallmark of glioblastoma. Hormone sensitive lipase (HSL), an important rate-limiting enzyme contributed to lipolysis, which was involved in aberrant lipolysis of glioblastoma, however, its definite roles and the relevant regulatory pathway have not been fully elucidated. Our investigations disclosed high expression of HSL in glioblastoma. Knock-down of HSL restrained proliferation, migration, and invasion of glioblastoma cells while adding to FAs could significantly rescue the inhibitory effect of si-HSL on tumor cells. Overexpression of HSL further promoted tumor cell proliferation and invasion. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the regulatory role of ncRNAs on HSL. Mechanistically, hsa_circ_0021205 regulated HSL expression by sponging miR-195-5p, which further promoted lipolysis and drove the malignant progression of glioblastoma. Besides, hsa_circ_0021205/miR-195-5p/HSL axis activated the epithelial-mesenchymal transition (EMT) signaling pathway. These findings suggested that hsa_circ_0021205 promoted tumorigenesis of glioblastoma through regulation of HSL, and targeting hsa_circ_0021205/miR-195-5p/HSL axis can serve as a promising new strategy against glioblastoma.

5.
Glia ; 72(5): 857-871, 2024 May.
Article in English | MEDLINE | ID: mdl-38234042

ABSTRACT

Tumor-associated astrocytes (TAAs) in the glioblastoma microenvironment play an important role in tumor development and malignant progression initiated by glioma stem cells (GSCs). In the current study, normal human astrocytes (NHAs) were cultured and continuously treated with GSC-derived exosomes (GSC-EXOs) induction to explore the mechanism by which GSCs affect astrocyte remodeling. This study revealed that GSC-EXOs can induce the transformation of NHAs into TAAs, with relatively swollen cell bodies and multiple extended processes. In addition, high proliferation, elevated resistance to temozolomide (TMZ), and increased expression of TAA-related markers (TGF-ß, CD44, and tenascin-C) were observed in the TAAs. Furthermore, GSC-derived exosomal miR-3065-5p could be delivered to NHAs, and miR-3065-5p levels increased significantly in TAAs, as verified by miRNA expression profile sequencing and Reverse transcription polymerase chain reaction. Overexpression of miR-3065-5p also enhanced NHA proliferation, elevated resistance to TMZ, and increased the expression levels of TAA-related markers. In addition, both GSC-EXO-induced and miR-3065-5p-overexpressing NHAs promoted tumorigenesis of GSCs in vivo. Discs Large Homolog 2 (DLG2, downregulated in glioblastoma) is a direct downstream target of miR-3065-5p in TAAs, and DLG2 overexpression could partially reverse the transformation of NHAs into TAAs. Collectively, these data demonstrate that GSC-EXOs induce the transformation of NHAs into TAAs via the miR-3065-5p/DLG2 signaling axis and that TAAs can further promote the tumorigenesis of GSCs. Thus, precisely blocking the interactions between astrocytes and GSCs via exosomes may be a novel strategy to inhibit glioblastoma development, but more in-depth mechanistic studies are still needed.


Subject(s)
Exosomes , Glioblastoma , Glioma , MicroRNAs , Humans , Glioblastoma/pathology , Astrocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Glioma/pathology , Temozolomide/pharmacology , Temozolomide/metabolism , Neoplastic Stem Cells/metabolism , Carcinogenesis/genetics , Cell Proliferation , Tumor Microenvironment , Tumor Suppressor Proteins/metabolism , Guanylate Kinases/metabolism
6.
Methods Mol Biol ; 2694: 69-90, 2024.
Article in English | MEDLINE | ID: mdl-37824000

ABSTRACT

Cytoskeletal motor proteins are essential molecular machines that hydrolyze ATP to generate force and motion along cytoskeletal filaments. Members of the dynein and kinesin superfamilies play critical roles in transporting biological payloads (such as proteins, organelles, and vesicles) along microtubule pathways, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes to progeny cells. Understanding the underlying mechanisms and behaviors of motor proteins is critical to provide better strategies for the treatment of motor protein-related diseases. Here, we provide detailed protocols for the recombinant expression of the Kinesin-1 motor KIF5C using a baculovirus/insect cell system and provide updated protocols for performing single-molecule studies using total internal reflection fluorescence microscopy and optical tweezers to study the motility and force generation of the purified motor.


Subject(s)
Cytoskeletal Proteins , Kinesins , Kinesins/genetics , Kinesins/metabolism , Cytoskeletal Proteins/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Dyneins/metabolism
7.
J Cancer ; 14(18): 3508-3520, 2023.
Article in English | MEDLINE | ID: mdl-38021156

ABSTRACT

Glioma is a common type of tumor in the central nervous system, and the mortality is high. The prognosis of advanced glioma patients remains poor, and the therapeutic strategies need to be developed. The roles of circRNAs in glioma remain largely unknown. The aim of this study was to explore the functions circRNA_103239 in the biological behaviour changes of glioma cells. The expression of circRNA_103239 in clinical samples and glioma cells were examined using RT-qPCR. The targets of circRNA_103239 were predicted using bioinformatics approach. Gain- and loss-of-function study were carried out. The proliferation of transfected cells were evaluated by CCK-8 assay. Migratory and invasive activities of the cells were examined using wound healing, colony formation and transwell assay. Tumor growth was also evaluated in vivo. The results indicated that the expression of circRNA_103239 was predominantly detected in the cytoplasma of glioma cells. In addition, the expression of circRNA_103239 was down-regulated in glioma, and up-regulated circRNA_103239 inhibited the progression of glioma. Furthermore, miR-182-5p was the novel target of circRNA_103239 in glioma, and MTSS1 was the putative downstream molecule of circRNA_103239/miR-182-5p axis. Additionally, circRNA_103239 suppressed the progression of glioma in a miR-182-5p/MTSS1 dependent manner. Moreover, circRNA_103239 inhibited tumour growth in vivo, and the expression of circRNA_103239 was regulated by METTL14-mediated m6A modification. In summary, in normal cells, METTL14 mediated the m6A modification and expression of circRNA_103239, which sponging miR-182-5p and inducing the expression of MTSS1, subsequently inhibiting the EMT; whereas in glioma cells, downregulated METTL14 induced downregulated m6A modification and expression of circRNA_103239, further resulting in the up-regulation of miR-182-5p and down-regulation of MTSS1, consequently promoting the EMT of glioma cells and triggering the progression of tumor.

8.
CNS Neurosci Ther ; 29(12): 3756-3773, 2023 12.
Article in English | MEDLINE | ID: mdl-37309294

ABSTRACT

AIM: Exosomal miRNAs derived from glioblastoma stem cells (GSCs) are important mediators of immunosuppressive microenvironment formation in glioblastoma multiform (GBM), especially in M2-like polarization of tumor-associated macrophages (TAMs). However, the exact mechanisms by which GSCs-derived exosomes (GSCs-exo) facilitate the remodeling of the immunosuppressive microenvironment of GBM have not been elucidated. METHODS: Transmission electron microscopy (TME) and nanoparticle tracking analysis (NTA) were applied to verify the existence of GSCs-derived exosomes. Sphere formation assays, flow cytometry, and tumor xenograft transplantation assays were performed to identify the exact roles of exosomal miR-6733-5p. Then, the mechanisms of miR-6733-5p and its downstream target gene regulating crosstalk between GSCs cells and M2 macrophages were further investigated. RESULTS: GSCs-derived exosomal miR-6733-5p induce macrophage M2 polarization of TAMs by positively targeting IGF2BP3 to activate the AKT signaling pathway, which further facilitates the self-renewal and stemness of GSCs. CONCLUSION: GSCs secrete miR-6733-5p-rich exosomes to induce M2-like polarization of macrophages, as well as enhance GSCs stemness and promote malignant behaviors of GBM through IGF2BP3 activated AKT pathway. Targeting GSCs exosomal miR-6733-5p may provide a potential new strategy against GBM.


Subject(s)
Glioblastoma , MicroRNAs , Humans , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/pathology , Stem Cells/metabolism , Cell Line, Tumor , Tumor Microenvironment
9.
bioRxiv ; 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37333225

ABSTRACT

Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. We investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA, revealing that both motors function as non-processive motors under load, producing single power strokes per MT encounter. Each homodimeric motor generates forces of ∼0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Importantly, cooperative activity among multiple motors leads to increased MT-sliding velocities. Our findings deepen our understanding of the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.

10.
Methods Mol Biol ; 2623: 221-238, 2023.
Article in English | MEDLINE | ID: mdl-36602689

ABSTRACT

Cytoplasmic dynein, the largest and most intricate cytoskeletal motor protein, powers the movement of numerous intracellular cargos toward the minus ends of microtubules (MT). Despite its essential roles in eukaryotic cells, dynein's molecular mechanism, the regulatory functions of its subunits and accessory proteins, and the consequences of human disease mutations on dynein force generation remain largely unclear. Recent work combining mutagenesis, single-molecule fluorescence, and optical tweezers-based force measurement have provided valuable insights into how dynein's multiple AAA+ ATPase domains regulate dynein's attachment to MTs. Here, we describe detailed protocols for the measurements of the force-dependent dynein-MT detachment rates. We provide updated and optimized protocols for the expression and purification of a tail-truncated single-headed Saccharomyces cerevisiae dynein, for polarity-marked MT polymerization, and for the non-covalent attachment of MTs to cover glass surfaces for the measurement of dynein-MT detachment forces.


Subject(s)
Cytoplasmic Dyneins , Dyneins , Humans , Dyneins/metabolism , Microtubules/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mutagenesis
11.
Virchows Arch ; 482(2): 445-450, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36520196

ABSTRACT

Pilocytic astrocytoma is mostly a pediatric tumor with the majority of patients under age 20. Although tumors can occur throughout neuraxis, most tumors are in the cerebellum and optic chiasm. Pilocytic astrocytoma in unusual locations is often associated with different genetic alterations than the classic KIAA1549::BRAF fusion. We report a rare adult pilocytic astrocytoma of the septum pellucidum that presented with progressive headache. A detailed genomic evaluation found a fusion between BRAF and a novel partner RIN2, a gene overexpressed in both low-grade glioma and glioblastoma. The RIN2::BRAF transcript encodes a chimeric protein containing a dimerization domain SH2 and an intact kinase domain, consistent with a prototypic oncogenic kinase rearrangement. In addition, we discuss the potential oncogenic mechanisms of BRAF signaling and its implication in targeted therapy with kinase inhibitors.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Child , Humans , Young Adult , Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carrier Proteins , Guanine Nucleotide Exchange Factors/metabolism , Proto-Oncogene Proteins B-raf/genetics , Septum Pellucidum/metabolism , Septum Pellucidum/pathology , Signal Transduction , Adolescent
13.
CNS Neurosci Ther ; 29(4): 988-999, 2023 04.
Article in English | MEDLINE | ID: mdl-36377508

ABSTRACT

BACKGROUND: Glioma is the most common malignant tumor of the central nervous system, with high heterogeneity, strong invasiveness, high therapeutic resistance, and poor prognosis, comprehending a serious challenge in neuro-oncology. Until now, the mechanisms underlying glioma progression have not been fully elucidated. METHODS: The expression of DExH-box helicase 9 (DHX9) in tissues and cells was detected by qRT-PCR and western blot. EdU and transwell assays were conducted to assess the effect of DHX9 on proliferation, migration and invasion of glioma cells. Cocultured model was used to evaluate the role of DHX9 on macrophages recruitment and polarization. Animal study was performed to explore the role of DHX9 on macrophages recruitment and polarization in vivo. Bioinformatics analysis, dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay was used to explore the relation between DHX9 and TCF12/CSF1. RESULTS: DHX9 was elevated in gliomas, especially in glioblastoma multiforme (GBM). Besides promoting the proliferation, migration, and invasion of glioma cells, DHX9 facilitated the infiltration of macrophages into glioma tissues and polarization to M2-like macrophages, known as tumor-associated macrophages (TAMs). DHX9 silencing decreased the expression of colony-stimulating factor 1 (CSF1), which partially restored the inhibitory effect on malignant progress of glioma and infiltration of TAMs caused by DHX9 knockdown by targeting the transcription factor 12 (TCF12). Moreover, TCF12 could directly bind to the promoter region of CSF1. CONCLUSION: DHX9/TCF12/CSF1 axis regulated the increases in the infiltration of TAMs to promote glioma progression and might be a novel potential target for future immune therapies against gliomas.


Subject(s)
Glioma , Tumor-Associated Macrophages , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Glioma/genetics , Glioma/immunology , Glioma/pathology , Macrophages/immunology , Macrophages/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Humans
14.
Elife ; 112022 12 07.
Article in English | MEDLINE | ID: mdl-36476638

ABSTRACT

Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and regulating the composition of the dynein motor complex.


Subject(s)
Dyneins , Microtubules , Animals , Mice , Biological Transport , Cytoskeleton/metabolism , Dynactin Complex/metabolism , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism
15.
J Cell Sci ; 134(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34114033

ABSTRACT

The kinesin-4 member KIF7 plays critical roles in Hedgehog signaling in vertebrate cells. KIF7 is an atypical kinesin as it binds to microtubules but is immotile. We demonstrate that, like conventional kinesins, KIF7 is regulated by auto-inhibition, as the full-length protein is inactive for microtubule binding in cells. We identify a segment, the inhibitory coiled coil (inhCC), that is required for auto-inhibition of KIF7, whereas the adjacent regulatory coiled coil (rCC) that contributes to auto-inhibition of the motile kinesin-4s KIF21A and KIF21B is not sufficient for KIF7 auto-inhibition. Disease-associated mutations in the inhCC relieve auto-inhibition and result in strong microtubule binding. Surprisingly, uninhibited KIF7 proteins did not bind preferentially to or track the plus ends of growing microtubules in cells, as suggested by previous in vitro work, but rather bound along cytosolic and axonemal microtubules. Localization to the tip of the primary cilium also required the inhCC, and could be increased by disease-associated mutations regardless of the auto-inhibition state of the protein. These findings suggest that loss of KIF7 auto-inhibition and/or altered cilium tip localization can contribute to the pathogenesis of human disease.


Subject(s)
Cilia , Kinesins , Axoneme , Hedgehog Proteins , Humans , Kinesins/genetics , Microtubules
16.
Nat Commun ; 11(1): 5952, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230227

ABSTRACT

Cytoplasmic dynein is the primary motor for microtubule minus-end-directed transport and is indispensable to eukaryotic cells. Although each motor domain of dynein contains three active AAA+ ATPases (AAA1, 3, and 4), only the functions of AAA1 and 3 are known. Here, we use single-molecule fluorescence and optical tweezers studies to elucidate the role of AAA4 in dynein's mechanochemical cycle. We demonstrate that AAA4 controls the priming stroke of the motion-generating linker, which connects the dimerizing tail of the motor to the AAA+ ring. Before ATP binds to AAA4, dynein remains incapable of generating motion. However, when AAA4 is bound to ATP, the gating of AAA1 by AAA3 prevails and dynein motion can occur. Thus, AAA1, 3, and 4 work together to regulate dynein function. Our work elucidates an essential role for AAA4 in dynein's stepping cycle and underscores the complexity and crosstalk among the motor's multiple AAA+ domains.


Subject(s)
Cytoplasmic Dyneins/chemistry , Cytoplasmic Dyneins/metabolism , AAA Domain , Adenosine Triphosphate/metabolism , Cytoplasmic Dyneins/genetics , Hydrolysis , Microtubules/metabolism , Movement , Mutagenesis , Optical Tweezers , Protein Binding , Protein Conformation , Protein Multimerization , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
17.
J Org Chem ; 85(8): 5146-5157, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32182067

ABSTRACT

A novel and efficient method has been proposed for the synthesis of 1,4-benzodiazepine-5-ones from o-nitrobenzoic N-allylamides by using molybdenyl acetylacetonate and copper(II) trifluoromethanesulfonate as catalysts in the presence of triphenylphosphine. This synthesis process involves nitrene formation, C-H bond insertion, C═C bond rearrangement, and C-N bond formation cascade reactions via copper- and molybdenum-catalyzed mediation. The method features a wide substrate scope and a moderate to high yield (up to 90%), exhibiting the possibility for practical applications.

18.
ChemPhotoChem ; 4(12): 5337-5340, 2020 Dec.
Article in English | MEDLINE | ID: mdl-36090950

ABSTRACT

Acid-sensing ion channels (ASICs), present in both central and peripheral neurons, respond to changes in extracellular protons. They play important roles in many symptoms and diseases, such as pain, ischemic stroke and neurodegenerative diseases. Herein, we report a novel approach to activate ASICs with the precision of light using organic photoacid generators (PAGs), which are molecules that release H+ upon light illumination, and have been recently used in biomedical studies. The PAGs showed low toxicity in dark conditions. Under LED light illumination, ASICs activation and consequent calcium ion influx was monitored and analysed by fluorescence microscopy, and showed a strong light-dependent response. This approach allows the activation of ASICs with the precision of light, and may be valuable to help better elucidate the molecular mechanism of ASICs and unveil their roles in physiology, pathophysiology, and behaviour.

19.
ACS Omega ; 4(12): 14669-14679, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552306

ABSTRACT

The electronic properties of neutral 2,4-bis(4-bis(2-hydroxyethyl) amino-2-hydroxy-6-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)squaraine (1) and charged 2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-yl)butyl)benzo-thiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide (2) squaraine derivatives were analyzed based on comprehensive linear photophysical, photochemical, nonlinear optical studies (including two-photon absorption (2PA) and femtosecond transient absorption spectroscopy measurements), and quantum chemical calculations. The steady-state absorption, fluorescence, and excitation anisotropy spectra of these new squaraines revealed the values and mutual orientations of the main transition dipoles of 1 and 2 in solvents of different polarity, while their role in specific nonlinear optical properties was shown. The degenerate 2PA spectra of 1 and 2 exhibited similar shapes, with maximum cross sections of ∼300-400 GM, which were determined by the open aperture Z-scan method over a broad spectral range. The nature of the time-resolved excited-state absorption spectra of 1 and 2 was analyzed using a femtosecond transient absorption pump-probe technique and the characteristic relaxation times of 4-5 ps were revealed. Quantum chemical analyses of the electronic properties of 1 and 2 were performed using the ZINDO/S//DFT theory level, affording good agreement with experimental data. To demonstrate the potential of squaraines 1 and 2 as fluorescent probes for bioimaging, laser scanning fluorescence microscopy images of HeLa cells incubated with new squaraines were obtained.

20.
Bioconjug Chem ; 30(9): 2312-2316, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31433175

ABSTRACT

Mitochondria are essential targets for treatment of diseases with mitochondrial disorders such as diabetes, cancer, and cardiovascular and neurodegenerative diseases. Mitochondria penetrating peptides (MPPs) are composed of cationic and hydrophobic amino acids that can target and permeate the mitochondrial membrane. Herein, a novel d-argine-phenylalanine-d-argine-phenylalanine-d-argine-phenylalanine-NH2 (rFrFrF) was tagged with a rhodamine-based fluorescent chromophore (TAMRA). This probe (TAMRA-rFrFrF) exhibited advantageous properties for long-term mitochondria tracking as demonstrated by fluorescence microscopy. Cell viability assays and oxygen consumption rates indicate low cytotoxicity and high biocompatibility of the new contrast agent. Colocalization studies suggest that TAMRA-rFrFrF is a promising candidate for continuous mitochondrial tracking for up to 3 days.


Subject(s)
Cell Tracking/methods , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Fluorescent Dyes/chemistry , Mitochondria/metabolism , Rhodamines/chemistry , Cell Survival , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...