Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38001963

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is associated with enhanced aerobic glycolysis through elevated glucose uptake and the upregulated expression of genes encoding rate-limiting glycolytic enzymes. However, the direct impact of altered glycolytic pathways on pancreatic tumor progression has not been thoroughly investigated. Here, we utilized two strains of BAC transgenic mice with pancreatic expression of two distinct sets of glycolytic genes each arranged in a polycistronic fashion (PFKFB3-HK2-GLUT1 and LDHA-PDK1, respectively) to investigate the role of altered glycolysis on the development of pancreatic ductal tumor development in the Pdx1-Cre; LSL-KrasG12D mice. The overexpression of the two sets of glycolytic genes exhibited no significant effects on tumor development in the 4-5-month-old mice (the PanIN2 lesions stage). In the 9-10-month-old mice, the overexpression of PFKFB3-HK2-GLUT1 significantly accelerated PanIN3 progression, exhibiting elevated levels of ductal cell marker CK19 and tumor fibrosis. Surprisingly, the overexpression of LDHA-PDK1 significantly attenuated the progression of PanIN3 in the 9-10-month-old mice with significantly downregulated levels of CK19 and fibrosis. Therefore, distinct set of glycolytic enzymes that are involved in different glycolytic routes exhibited contrasting effects on pancreatic ductal tumor development depending on the tumor stages, providing novel insights into the complexity of the glycolytic pathway in the perspective of PDAC development and therapy.

2.
Cell Rep ; 40(11): 111330, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36103834

ABSTRACT

Nuclear protein high-mobility group box 1 (HMGB1) can be actively secreted by activated immune cells and functions as a proinflammatory cytokine. Regulation of HMGB1 secretion is critical for treatment of HMGB1-mediated inflammation and related diseases. This study demonstrates that S-nitrosylation (SNO; the covalent binding of nitric oxide [NO] to cysteine thiols) by inducible nitric oxide synthase (iNOS)-derived NO at Cys106 is essential and sufficient for inflammation-elicited HMGB1 secretion. iNOS deletion or inhibition or Cys106Ser mutation prevents lipopolysaccharide (LPS)- and/or poly(I:C)-elicited HMGB1 secretion. NO donors induce SNO of HMGB1 and reproduce inflammogen-triggered HMGB1 secretion. SNO of HMGB1 promotes its proinflammatory and neurodegenerative effects. Intranigral HMGB1 injection induces chronic microglial activation, dopaminergic neurodegeneration, and locomotor deficits, the key features of Parkinson's disease (PD), in wild-type, but not Mac1 (CD11b/CD18)-deficient, mice. This study indicates pivotal roles for SNO modification in HMGB1 secretion and HMGB1-Mac1 interaction for inflammatory neurodegeneration, identifying a mechanistic basis for PD development.


Subject(s)
HMGB1 Protein/metabolism , Animals , Inflammation , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/metabolism , Nitric Oxide Donors
3.
Planta ; 250(1): 381-390, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31062160

ABSTRACT

MAIN CONCLUSION: Ethylene receptor is crucial for PCD and aerenchyma formation in Typha angustifolia leaves. Not only does it receive and deliver the ethylene signal, but it probably can determine the cell fate during aerenchyma morphogenesis, which is due to the receptor expression quantity. Aquatic plant oxygen delivery relies on aerenchyma, which is formed by a programmed cell death (PCD) procedure. However, cells in the outer edge of the aerenchyma (palisade cells and septum cells) remain intact, and the mechanism is unclear. Here, we offer a hypothesis: cells that have a higher content of ethylene receptors do not undergo PCD. In this study, we investigated the leaf aerenchyma of the aquatic plant Typha angustifolia. Ethephon and pyrazinamide (PZA, an inhibitor of ACC oxidase) were used to confirm that ethylene is an essential hormone for PCD of leaf aerenchyma cells in T. angustifolia. That the ethylene receptor was an indispensable factor in this PCD was confirmed by 1-MCP (an inhibitor of the ethylene receptor) treatment. Although PCD can be avoided by blocking the ethylene receptor, excessive ethylene receptors also protect cells from PCD. TaETR1, TaETR2 and TaEIN4 in the T. angustifolia leaf were detected by immunofluorescence (IF) using polyclonal antibodies. The result showed that the content of ethylene receptors in PCD-unsusceptible cells was 4-14 times higher than that one in PCD-susceptible cells, suggesting that PCD-susceptible cells undergo the PCD programme, while PCD-unsusceptible cells do not due to the content difference in the ethylene receptor in different cells. A higher level of ethylene receptor content makes the cells insensitive to ethylene, thereby avoiding cell death and degradation.


Subject(s)
Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Typhaceae/physiology , Amino Acid Oxidoreductases/antagonists & inhibitors , Apoptosis/genetics , Cell Differentiation/genetics , Cyclopropanes/pharmacology , Ethylenes/metabolism , Organophosphorus Compounds/pharmacology , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Pyrazinamide/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Typhaceae/drug effects , Typhaceae/enzymology , Typhaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...