Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
FEBS J ; 291(7): 1545-1559, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38245815

ABSTRACT

Recent studies have revealed the involvement of RNA m6A modification in embryonic development; however, the relationship between aberrant RNA m6A modification and unexplained recurrent spontaneous abortion (URSA) remains unclear. In this study, we analysed the level of RNA m6A modification in trophoblasts using dot blot, RNA m6A quantification, and MeRIP assays. By integrating data from the GEO database, RNA-Seq, and MeRIP-Seq, we examined the aberrant expression of m6A methyltransferases and their downstream molecules in chorionic villus (placental) tissues. RNA pull-down, RIP, and electrophoretic mobility shift assay were used to analyse the binding relationship between the YTHDC1 protein and MEG3. Additionally, RNA stability and BrU immunoprecipitation chase assays were utilised to elucidate the regulation of MEG3 stability by YTHDC1. ChIP and DNA pull-down RNA experiments were performed to elucidate the mechanism by which MEG3 targets EZH2 to the TGF-ß1 promoter. The results showed that the expression of the m6A demethylase FTO protein was significantly increased in URSA trophoblasts, leading to inhibition of the MEG3 m6A modification and weakening of the stabilising effect of the m6A binding protein YTHDC1 on MEG3. Furthermore, MEG3 was found to bind simultaneously with the EZH2 protein and the TGF-ß1 gene promoter, enabling the localisation of EZH2 protein to the TGF-ß1 gene promoter and subsequent inhibition of TGF-ß1 gene expression. In summary, our findings elucidate the mechanism by which FTO protein regulates the MEG3-TGF-ß signalling pathway, thereby suppressing trophoblast invasion and proliferation in URSA trophoblast cells. These findings provide new insights for the treatment of URSA.


Subject(s)
Abortion, Spontaneous , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Female , Humans , Pregnancy , Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Adenosine/genetics , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Placenta , RNA Stability , Transforming Growth Factor beta1/genetics
2.
J Reprod Immunol ; 152: 103637, 2022 08.
Article in English | MEDLINE | ID: mdl-35576684

ABSTRACT

Chronic endometritis (CE) is a persistent and subtle local inflammatory disease characterized by abnormal plasma cell infiltration in the endometrial stroma.The incidence of chronic endometritis is as high as 15-57.5% in women suffering from infertility, implantation failure of in vitro fertilization (IVF) and unexplained recurrent abortion. Many studies both at home and abroad have shown that CE can reduce the receptivity of endometrium and affect embryo implantation. According to the existing reproductive immunity research, the abnormality of immune cell subsets in endometrium is an important factors leading to pregnancy failure. The immune microenvironment in endometrium consists of immune cells and immune molecules, and their influence on embryo implantation can not be ignored. This review paper discusses the controversy of pathogenesis, diagnosis and treatment of CE from the perspective of immune microenvironment by referring to related literature at home and abroad, and investigates the possible ways to improve the diagnosis and treatment of CE.


Subject(s)
Endometritis , Infertility, Female , Chronic Disease , Embryo Implantation , Endometritis/diagnosis , Endometritis/epidemiology , Endometritis/therapy , Endometrium , Female , Fertilization in Vitro/adverse effects , Humans , Infertility, Female/pathology , Pregnancy
3.
Mol Med ; 27(1): 70, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238211

ABSTRACT

BACKGROUND: Maternally Expressed Gene 3 (MEG3) is expressed at low levels in placental villi during preeclampsia; however, its roles in unexplained recurrent spontaneous abortion (URSA) remain unclear. In this study, we aimed to explore the relationship between MEG3 and URSA. METHODS: The differentially expressed lncRNAs (MEG3) and its downstream genes (RASA1) were identified using bioinformatics analysis of Genomic Spatial Event (GSE) database. The expression levels of MEG3 in embryonic villis (with gestational ages of 49-63 days) and primary trophoblasts were determined using quantitative RT-PCR assay. A mouse model of Embryo implantation, Cell Counting Kit-8 (CCK-8), flow cytometry, and Transwell migration assays were performed to determine the implantation, proliferative, apoptotic, and invasive capacities of trophoblast. The level of phosphorylated core proteins in the RAS-MAPK pathway were analyzed using Western blot assay. The mechanisms of MEG3 in the regulation of RASA1 were studied by RNA pulldown, RNA immunoprecipitation (RIP), DNA pulldown, and chromatin immunoprecipitation (ChIP) assays. RESULTS: MEG3 had a low expression level in embryonic villis of 102 URSA patients compared with those of 102 normal pregnant women. MEG3 could promote proliferation and invasion, inhibit the apoptosis of primary trophoblast of URSA patients (PT-U cells), as well as promote embryo implantation of mouse. Besides, MEG3 also promoted the phosphorylation of rapidly accelerated fibrosarcoma (Raf), mitogen-activated protein kinase kinase (MEK), and extracellular-signal-regulated kinase (ERK) proteins. The results of RNA pull down and RIP assays showed that MEG3 bound with the enhancer of zeste homolog 2 (EZH2). The DNA pulldown assay revealed that MEG3 could bind to the promoter sequence of the RAS P21 Protein Activator 1 (RASA1) gene. Further, the ChIP assay showed that MEG3 promoted the binding of EZH2 to the promoter region of the RASA1 gene. CONCLUSIONS: The inactivation of MEG3 in embryonic villi association with URSA; MEG3 inhibited the expression of RASA1 by mediating the histone methylation of the promoter of RASA1 gene by EZH2, thereby activating the RAS-MAPK pathway and enhancing the proliferative and invasive capacities of trophoblasts.


Subject(s)
Abortion, Spontaneous/etiology , Abortion, Spontaneous/metabolism , Mitogen-Activated Protein Kinases/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , Trophoblasts/metabolism , p120 GTPase Activating Protein/metabolism , Apoptosis/genetics , Biomarkers , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Disease Susceptibility , Embryo Implantation/genetics , Female , Gene Expression Regulation , Gestational Age , Histones/metabolism , Humans , Immunophenotyping , Methylation , Placenta/metabolism , Pregnancy
4.
Mol Biol Rep ; 48(6): 5109-5119, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34173139

ABSTRACT

Some studies suggest that the inactivation of the Ras-MAPK pathway in trophoblast cells can lead to recurrent abortion, but the molecular mechanism underlying the inactivation of this pathway in trophoblast cells is still unclear. This study aimed to explore the relationship between the mechanism of abnormal activation of RASA1, a regulatory protein of the Ras-MAPK pathway, and unexplained recurrent spontaneous abortion. RT-qPCR was used to detect the transcription levels of RASA1 gene. Immunohistochemistry and Western blot were used to detect the expression levels of the RASA1, Raf and MEK proteins. CCK-8, TUNEL and Transwell assays were used to detect the proliferative, apoptotic, and invasive capacities of HTR-8/SVneo cells. ChIP assays were used to detect the enrichment of H3K27me3 in RASA1 gene promoter. Abortion villi experiments showed that the enrichment of H3K27me3 in the RASA1 gene promoter was reduced, and that both RASA1 gene transcription and RASA1 protein expression were increased. Cell experiments confirmed that RASA1 could decrease the phosphorylated Raf and MEK proteins, inhibit the proliferation and invasion ability, and promote the apoptosis ability of HTR-8/SVneo cells. It was also found that the proliferation and invasion ability as well as the Ras-MAPK pathway activity of HTR-8/SVneo cells were inhibited when treated with histone methyltransferase inhibitor DZNep. RASA1 gene was abnormally activated in unexplained recurrent spontaneous abortion villi due to the decreased enrichment of H3K27me3 in the gene promoter. High expression of RASA1 could inhibit the activity of the Ras-MAPK pathway, and thus inhibit the proliferation and invasion ability of trophoblast cells.


Subject(s)
Abortion, Habitual/genetics , MAP Kinase Signaling System/genetics , p120 GTPase Activating Protein/genetics , Adult , Apoptosis/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , China , Female , Histones/metabolism , Humans , MAP Kinase Signaling System/physiology , Methylation , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Trophoblasts/cytology , Trophoblasts/metabolism , p120 GTPase Activating Protein/metabolism , ras Proteins/metabolism
5.
Front Cell Dev Biol ; 9: 652408, 2021.
Article in English | MEDLINE | ID: mdl-34095116

ABSTRACT

The liver is one of vital organs of the human body, and it plays an important role in the metabolism and detoxification. Moreover, fetal liver is one of the hematopoietic places during ontogeny. Understanding how this complex organ develops during embryogenesis will yield insights into how functional liver replacement tissue can be engineered and how liver regeneration can be promoted. Here, we combine the advantages of single-cell RNA sequencing and Spatial Transcriptomics (ST) technology for unbiased analysis of fetal livers over developmental time from 8 post-conception weeks (PCW) and 17 PCW in humans. We systematically identified nine cell types, and defined the developmental pathways of the major cell types. The results showed that human fetal livers experienced blood rapid growth and immigration during the period studied in our experiments, and identified the differentially expressed genes, and metabolic changes in the developmental process of erythroid cells. In addition, we focus on the expression of liver disease related genes, and found that 17 genes published and linked to liver disease mainly expressed in megakaryocyte and endothelial, hardly expressed in any other cell types. Together, our findings provide a comprehensive and clear understanding of the differentiation processes of all main cell types in the human fetal livers, which may provide reference data and information for liver disease treatment and liver regeneration.

6.
Bioengineered ; 12(1): 108-116, 2021 12.
Article in English | MEDLINE | ID: mdl-33356807

ABSTRACT

The main aim of the work is to study the regulation of gene expression in the interaction between rice and Magnaporthe oryzae by gene chip technology. In this study, we mainly focused on changes of gene expression at 24, 48, and 72 hours post-inoculation (hpi), through which we could conduct a more comprehensive analysis of rice blast-related genes in the process of infection. The results showed that the experimental groups contained 460, 1227, and 3937 significant differentially expressed genes at 24, 48, and 72 hpi, respectively. Furthermore, 115 significantly differentially expressed genes were identified in response to rice blast infection at all three time points. By annotating these 115 genes, they were divided into three categories: metabolic pathways, proteins or enzymes, and organelle components. As expected, many of these genes were known rice blast-related genes; however, we discovered new genes with high fold changes. Most of them encoded conserved hypothetical proteins, and some were hypothetically conserved genes. Our study may contribute to finding new resistance genes and understanding the mechanism of rice blast development.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Genome, Plant/genetics , Host-Pathogen Interactions/genetics , Oryza , Microarray Analysis , Oryza/genetics , Oryza/metabolism , Oryza/microbiology , Plant Diseases , Transcriptome/genetics
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093321

ABSTRACT

Fatty acids (FAs) have been implicated in signaling roles in plant defense responses. We previously reported that mutation or RNAi-knockdown (OsSSI2-kd) of the rice OsSSI2 gene, encoding a stearoyl acyl carrier protein FA desaturase (SACPD), remarkably enhanced resistance to blast fungus Magnaporthe oryzae and the leaf-blight bacterium Xanthomonas oryzae pv. oryzae (Xoo). Transcriptomic analysis identified six AAA-ATPase family genes (hereafter OsAAA-ATPase1-6) upregulated in the OsSSI2-kd plants, in addition to other well-known defense-related genes. Here, we report the functional analysis of OsAAA-ATPase1 in rice's defense response to M. oryzae. Recombinant OsAAA-ATPase1 synthesized in Escherichia coli showed ATPase activity. OsAAA-ATPase1 transcription was induced by exogenous treatment with a functional analogue of salicylic acid (SA), benzothiadiazole (BTH), but not by other plant hormones tested. The transcription of OsAAA-ATPase1 was also highly induced in response to M. oryzae infection in an SA-dependent manner, as gene induction was significantly attenuated in a transgenic rice line expressing a bacterial gene (nahG) encoding salicylate hydroxylase. Overexpression of OsAAA-ATPase1 significantly enhanced pathogenesis-related gene expression and the resistance to M. oryzae; conversely, RNAi-mediated suppression of this gene compromised this resistance. These results suggest that OsAAA-APTase1 plays an important role in SA-mediated defense responses against blast fungus M. oryzae.


Subject(s)
Adenosine Triphosphatases/metabolism , Disease Resistance , Oryza , Plant Diseases/microbiology , Plant Proteins/metabolism , Salicylic Acid/metabolism , Adenosine Triphosphatases/genetics , Magnaporthe/growth & development , Oryza/enzymology , Oryza/genetics , Oryza/microbiology , Plant Proteins/genetics , Xanthomonas/growth & development
8.
Front Plant Sci ; 8: 1558, 2017.
Article in English | MEDLINE | ID: mdl-28932234

ABSTRACT

In response to pathogen attack, plants prioritize defense reactions generally at the expense of plant growth. In this work, we report that changes in phytohormone signaling pathways are associated with the stunted plant growth caused by blast disease in rice seedlings. Infection of rice seedlings with blast fungus Magnaporthe oryzae (race 007.0) at the four-leaf stage (three true leaves) resulted in considerable inhibition of the growth of the upper uninfected distal leaves; the length of leaf blade and leaf sheath of the sixth and seventh leaf was reduced by 27 and 82%, and 88 and 72%, respectively, compared to that in the uninoculated plant control. Interestingly, cutting off the blast-infected fourth leaf blade within 2 days post inoculation (dpi) significantly rescued the inhibition of leaf growth, implying that an inhibitory substance(s) and/or signal was generated in the blast-infected leaves (fourth leaf) and transmitted to the upper distal leaves (sixth and seventh) during the 2-dpi period that induced growth inhibition. Expression analysis of marker genes for phytohormone pathways revealed acute activation of the jasmonate (JA) and abscisic acid (ABA) signaling pathways, and repression of auxin, gibberellic acid (GA) and salicylic acid (SA) signaling pathways, in the sixth leaf. The genes related to cell wall expansion were also significantly downregulated. In the blast-infected fourth leaf, JA pathway was activated within 2 dpi, followed by activation of ABA pathway 3 dpi. Further, leaf inhibition caused by blast infection was partially rescued in the rice mutant line coleoptile photomorphogenesis 2 (cpm2), which is defective in the gene encoding allene oxide cyclase (OsAOC). These results indicate that the JA signaling pathway is at least partly involved in the growth inhibition processes. Collectively, our data suggest that, upon pathogen attack, rice seedlings prioritize defense reactions against the infecting pathogen by temporarily ceasing plant growth through the systemic control of phytohormone pathways.

9.
Biotechnol Biotechnol Equip ; 28(6): 999-1007, 2014 Nov 02.
Article in English | MEDLINE | ID: mdl-26740780

ABSTRACT

Rice blast resistance (R) genes-mediated resistance response depends on various resistance-related genes involved in incompatible interactions. In this work, the expression profiles of innate rice immunity related genes were examined in the mediated resistance response of true/field resistance genes. Three sets of rice near-isogenic lines (NILs) were used: the resistant NILs carrying true resistance genes in the genetic background of the susceptible cultivar Nipponbare (NB), NB-Pib, NB-Pizt, NB-Pik and NB-Pita2; NILs bearing field resistance genes pi21 in the susceptible cultivar Aichiasahi (AA) AA-pi21, Kahei (KHR). The marker gene OsWRKY45 of salicylic acid (SA) signalling was upregulated in all tested cultivars. And, JAmyb (marker gene of jasmonic acid signalling) showed higher upregulation in the resistance lines with nucleotide-binding sites and leucine-rich repeat (NBS-LRR) R genes Pib, Pizt, Pik, Pita2 and Pikahei than in NB and KHS. SalT of abscisic acid (ABA) signalling may be involved in the R/Avr interaction, including Pizt, Pik, pi21 and Pikahei. However, SalT was shown to negatively regulate Pib/AvrPib interaction. OsPR1b and PBZ1 were differentially expressed and strongly activated at a later stage by 48 h post-inoculation. Interestingly, there was evidence that OsPR1b and PBZ1 played an important role in the pi21-mediated response. It was shown that OsRAR1 could be upregulated in the true resistance line NB-Pita2 and the field resistance line KHR, while OsSGT1 and OsHSP90 could be upregulated in all tested lines. The involvement of these genes illustrated the complexity of the downstream signalling pathways in the mediated resistance response of true/field resistance genes.

10.
Mol Plant Microbe Interact ; 26(3): 287-96, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23234404

ABSTRACT

Hormone crosstalk is pivotal in plant-pathogen interactions. Here, we report on the accumulation of cytokinins (CK) in rice seedlings after infection of blast fungus Magnaporthe oryzae and its potential significance in rice-M. oryzae interaction. Blast infection to rice seedlings increased levels of N(6)-(Δ(2)-isopentenyl) adenine (iP), iP riboside (iPR), and iPR 5'-phosphates (iPRP) in leaf blades. Consistent with this, CK signaling was activated around the infection sites, as shown by histochemical staining for ß-glucuronidase activity driven by a CK-responsive OsRR6 promoter. Diverse CK species were also detected in the hyphae (mycelium), conidia, and culture filtrates of blast fungus, indicating that M. oryzae is capable of production as well as hyphal secretion of CK. Co-treatment of leaf blades with CK and salicylic acid (SA), but not with either one alone, markedly induced pathogenesis-related genes OsPR1b and probenazole-induced protein 1 (PBZ1). These effects were diminished by RNAi-knockdown of OsNPR1 or WRKY45, the key regulators of the SA signaling pathway in rice, indicating that the effects of CK depend on these two regulators. Taken together, our data imply a coevolutionary rice-M. oryzae interaction, wherein M. oryzae probably elevates rice CK levels for its own benefits such as nutrient translocation. Rice plants, on the other hand, sense it as an infection signal and activate defense reactions through the synergistic action with SA.


Subject(s)
Cytokinins/metabolism , Magnaporthe/metabolism , Oryza/immunology , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Salicylic Acid/pharmacology , Cytokinins/analysis , Cytokinins/pharmacology , Drug Synergism , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Host-Pathogen Interactions , Hyphae , Indoleacetic Acids/metabolism , Magnaporthe/physiology , Oryza/drug effects , Oryza/genetics , Oryza/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/analysis , Plant Growth Regulators/pharmacology , Plant Immunity , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , RNA Interference , Seedlings/drug effects , Seedlings/genetics , Seedlings/immunology , Seedlings/metabolism , Signal Transduction , Spores, Fungal
11.
Sci China Life Sci ; 55(2): 141-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22415685

ABSTRACT

The elite rice cultivar Yuejingsimiao 2 (YJ2) is characterized by a high level of grain quality and yield, and resistance against Magnaporthe oryzae. YJ2 showed 100% resistance to four fungal populations collected from Guangdong, Sichuan, Liaoning, and Heilongjiang Provinces, which is a higher frequency than that shown by the well-known resistance (R) gene donor cultivars such as Sanhuangzhan 2 and 28zhan. Segregation analysis for resistance with F(2) and F(4) populations indicated the resistance of YJ2 was controlled by multiple genes that are dominant or recessive. The putative R genes of YJ2 were roughly tagged by SSR markers, located on chromosomes 2, 6, 8, and 12, in a bulked-segregant analysis using genome-wide selected SSR markers with F(4) lines that segregated into 3 resistant (R):1 susceptible (S) or 1R:3S. The recessive R gene on chromosome 8 was further mapped to an interval ≈1.9 cM/152 kb in length by linkage analysis with genomic position-ready markers in the mapping population derived from an F(4) line that segregated into 1R:3S. Given that no major R gene was mapped to this interval, the novel R gene was designated as pi55(t). Out of 26 candidate genes predicted in the region based on the reference genomic sequence of the cultivar Nipponbare, two genes that encode a leucine-rich repeat-containing protein and heavy-metal-associated domain-containing protein, respectively, were suggested as the most likely candidates for pi55(t).


Subject(s)
Genes, Plant/genetics , Magnaporthe/growth & development , Oryza/genetics , Plant Diseases/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Crosses, Genetic , Disease Resistance/genetics , Genes, Recessive/genetics , Genome, Plant/genetics , Host-Pathogen Interactions , Magnaporthe/physiology , Oryza/microbiology , Plant Diseases/microbiology
12.
Theor Appl Genet ; 122(7): 1331-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21274511

ABSTRACT

A new bacterial blight recessive resistance gene xa34(t) was identified from the descendant of somatic hybridization between an aus rice cultivar (cv.) BG1222 and susceptible cv. IR24 against Chinese race V (isolate 5226). The isolate was used to test the resistance or susceptibility of F(1) progenies and reciprocal crosses of the parents. The results showed that F(1) progenies appeared susceptibility there were 128R (resistant):378S (susceptible) and 119R:375S plants in F(2) populations derived from two crosses of BG1222/IR24 and IR24/BG1222, respectively, which both calculates into a 1R:3S ratio. 320 pairs of stochastically selected SSR primers were used for genes' initial mapping. The screened results showed that two SSR markers, RM493 and RM446, found on rice chromosome 1 linked to xa34(t). Linkage analysis showed that these two markers were on both sides of xa34(t) with the genetic distances 4.29 and 3.05 cM, respectively. The other 50 SSR markers in this region were used for genes' fine mapping. The further results indicated that xa34(t) was mapped to a 1.42 cM genetic region between RM10927 and RM10591. In order to further narrow down the genomic region of xa34(t), 43 of insertion/deletion (Indel) markers (BGID1-43) were designed according to the sequences comparison between japonica and indica rice. Parents' polymorphic detection and linkage assay showed that the Indel marker BGID25 came closer to the target gene with a 0.4 cM genetic distance. A contig map corresponding to the locus was constructed based on the reference sequences aligned by the xa34(t) linked markers. Consequently, the locus of xa34(t) was defined to a 204 kb interval flanked by markers RM10929 and BGID25.


Subject(s)
Genes, Recessive , Immunity, Innate , Oryza/genetics , Oryza/microbiology , Plant Diseases/genetics , Xanthomonas/pathogenicity , Chromosome Mapping , DNA Primers , Genes, Plant , Genetic Linkage , Genetics, Population , Inheritance Patterns , Oryza/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Polymorphism, Genetic , Xanthomonas/growth & development
13.
Protein Expr Purif ; 71(1): 74-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20026277

ABSTRACT

A plasmid (pCW) was modified to code for the complete sequence of house fly (Musca domestica) cytochrome P450 6A1 (CYP6A1) with only the second amino acid changed in the N-terminal portion and this plasmid was used to express the enzyme CYP6A1 in Escherichia coli cells. With the addition of delta-aminolevulinic acid and FeCl(3) to the culture, the enzyme was produced at a level about 0.25 micromol L(-1) (15mgL(-1)) of culture with approximately 50% of the P450 being associated with the membrane fraction. The CYP6A1 protein was characterized and the content of CYP6A1 in each fraction was determined by the spectroscopic method. A nearly homogenous CYP6A1 was obtained by purification with a combination of DEAE Sepharose fast flow and hydroxyapatite chromatography. Direct electrochemistry of CYP6A1 in a didodecyldimethylammonium bromide (DSAB) film on an edge-plane pyrolytic graphite electrode (EPG) has been obtained and the catalytic activity of the enzyme to aldrin has been demonstrated by the cyclic voltammetry.


Subject(s)
Cytochrome P-450 Enzyme System/isolation & purification , Cytochrome P-450 Enzyme System/metabolism , Electrochemistry/methods , Houseflies/enzymology , Aldrin/pharmacology , Animals , Chromatography , Durapatite , Electrophoresis, Polyacrylamide Gel , Enzyme Assays , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sepharose , Spectrum Analysis
14.
Genetics ; 177(3): 1871-80, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17947408

ABSTRACT

The resistance (R) gene Pi37, present in the rice cultivar St. No. 1, was isolated by an in silico map-based cloning procedure. The equivalent genetic region in Nipponbare contains four nucleotide binding site-leucine-rich repeat (NBS-LRR) type loci. These four candidates for Pi37 (Pi37-1, -2, -3, and -4) were amplified separately from St. No. 1 via long-range PCR, and cloned into a binary vector. Each construct was individually transformed into the highly blast susceptible cultivar Q1063. The subsequent complementation analysis revealed Pi37-3 to be the functional gene, while -1, -2, and -4 are probably pseudogenes. Pi37 encodes a 1290 peptide NBS-LRR product, and the presence of substitutions at two sites in the NBS region (V239A and I247M) is associated with the resistance phenotype. Semiquantitative expression analysis showed that in St. No. 1, Pi37 was constitutively expressed and only slightly induced by blast infection. Transient expression experiments indicated that the Pi37 product is restricted to the cytoplasm. Pi37-3 is thought to have evolved recently from -2, which in turn was derived from an ancestral -1 sequence. Pi37-4 is likely the most recently evolved member of the cluster and probably represents a duplication of -3. The four Pi37 paralogs are more closely related to maize rp1 than to any of the currently isolated rice blast R genes Pita, Pib, Pi9, Pi2, Piz-t, and Pi36.


Subject(s)
Genes, Plant , Oryza/genetics , Plant Proteins/genetics , Proteins/genetics , Amino Acid Sequence , Base Sequence , Binding Sites/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , DNA Primers/genetics , DNA, Plant/genetics , Evolution, Molecular , Gene Expression , Genetic Complementation Test , Leucine-Rich Repeat Proteins , Magnaporthe/pathogenicity , Molecular Sequence Data , Multigene Family , Oryza/microbiology , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology
15.
Mol Genet Genomics ; 278(4): 403-10, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17576597

ABSTRACT

Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F(2) population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F(2) population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita(2) locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of approximately 37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning.


Subject(s)
Chromosome Mapping , Genes, Plant/physiology , Immunity, Innate/genetics , Magnaporthe/physiology , Oryza/genetics , Computational Biology , Oryza/immunology , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/immunology
16.
Genetics ; 176(4): 2541-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17507669

ABSTRACT

The indica rice variety Kasalath carries Pi36, a gene that determines resistance to Chinese isolates of rice blast and that has been located to a 17-kb interval on chromosome 8. The genomic sequence of the reference japonica variety Nipponbare was used for an in silico prediction of the resistance (R) gene content of the interval and hence for the identification of candidate gene(s) for Pi36. Three such sequences, which all had both a nucleotide-binding site and a leucine-rich repeat motif, were present. The three candidate genes were amplified from the genomic DNA of a number of varieties by long-range PCR, and the resulting amplicons were inserted into pCAMBIA1300 and/or pYLTAC27 vectors to determine sequence polymorphisms correlated to the resistance phenotype and to perform transgenic complementation tests. Constructs containing each candidate gene were transformed into the blast-susceptible variety Q1063, which allowed the identification of Pi36-3 as the functional gene, with the other two candidates being probable pseudogenes. The Pi36-encoded protein is composed of 1056 amino acids, with a single substitution event (Asp to Ser) at residue 590 associated with the resistant phenotype. Pi36 is a single-copy gene in rice and is more closely related to the barley powdery mildew resistance genes Mla1 and Mla6 than to the rice blast R genes Pita, Pib, Pi9, and Piz-t. An RT-PCR analysis showed that Pi36 is constitutively expressed in Kasalath.


Subject(s)
Genes, Plant , Oryza/genetics , Oryza/microbiology , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA Primers/genetics , DNA, Plant/genetics , Evolution, Molecular , Gene Expression Profiling , Genetic Complementation Test , Magnaporthe/pathogenicity , Molecular Sequence Data , Mutation , Oryza/classification , Phenotype , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL