Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 915: 170159, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242449

ABSTRACT

A pilot project for groundwater recharge from rivers is currently being carried out in North China Plain. To investigate the influence of river recharge on groundwater hydrochemical characteristics, dynamic monitoring and analysis of groundwater samples were conducted at a typical recharge site in the Hutuo River alluvial-pluvial fan in the North China Plain from 2019 to 2021. Hydrochemical, isotopic, and multivariate statistical analyses were used to systematically reveal the spatiotemporal variation of groundwater chemistry and its driving factors during groundwater recharge process. The results showed that the groundwater hydrochemical types and characteristics in different recharge areas and recharge periods exhibited obvious spatiotemporal differences. The groundwater type varied from HCO3·SO4-Na·Mg to HCO3·SO4-Ca·Mg in an upstream ecological area, while the groundwater type changed from SO4·HCO3-Mg·Ca to HCO3·SO4-Ca·Mg in the downstream impacted by reclaimed water. Changes in the contents of Ca2+, Mg2+ and HCO3- were mostly controlled by the water-rock interactions and mixing-dilution of recharge water, while the increases in Na+, NO3-, Cl-, SO42- and NO3- contents were mainly due to the infiltration of reclaimed water. Nitrogen and oxygen isotope (δ15N and δ18O) tests and the Bayesian isotope mixing model results further demonstrated that nitrate pollution mainly originated from anthropogenic sources, and the major contribution came from manure and sewage, with an average proportion of 64.6 %. Principal component analysis indicated that water-rock interactions, river-groundwater mixing and redox environment alternation were dominant factors controlling groundwater chemical evolution in groundwater recharge process.

2.
RSC Adv ; 13(15): 9892-9902, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006351

ABSTRACT

Sorption mechanisms of ionizable organic pollutants by biochars and approaches for the prediction of sorption are still unclear. In this study, batch experiments were conducted to explore the sorption mechanisms of woodchip-derived biochars prepared at 200-700 °C (referred as WC200-WC700) for cationic, zwitterionic and anionic species of ciprofloxacin (referred as CIP+, CIP± and CIP-, respectively). The results revealed that the sorption affinity of WC200 for different CIP species was in the order of CIP± > CIP+ > CIP-, while that of WC300-WC700 remained the order of CIP+ > CIP± > CIP-. WC200 exhibited a strong sorption ability, which could be attributed to hydrogen bonding and electrostatic attraction with CIP+, electrostatic attraction with CIP±, and charge-assisted hydrogen bonding with CIP-. Pore filling and π-π interactions contributed to the sorption of WC300-WC700 for CIP+, CIP± and CIP-. Rising temperature facilitated CIP sorption to WC400 as verified by site energy distribution analysis. Proposed models including the proportion of the three CIP species and sorbent aromaticity index (H/C) can quantitatively predict CIP sorption to biochars with varying carbonization degrees. These findings are vital to elucidating the sorption behaviors of ionizable antibiotics to biochars and exploring potential sorbents for environmental remediation.

3.
Food Chem ; 409: 135297, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36623356

ABSTRACT

Segment drying is a common internal physiological disorder in citrus fruit, and vesicles get granulated or collapsed. This study aimed to probe whether and how the phenylpropanoid metabolism changes in vesicles during collapse of blood orange (Citrus sinensis cv. Tarocco). Vesicle collapse led to a decrease in the content of nutrients and flavonoids, while an increase in lignin content. This disorder was further associated with the increasing enzyme activities and gene expression levels of both the general phenylpropanoid pathway and branch pathway of lignin synthesis, while decreasing enzyme activities and gene expression levels of branch pathway of flavonoids synthesis. Targeted metabolomics analysis of 14 metabolites of the lignin pathway revealed that lignin precursors were accumulated in collapsed vesicles. We provide solid evidence that phenylpropanoid metabolism could be activated, and, intriguingly, metabolic flux may be shuttled to lignin precursors synthesis rather than flavonoids synthesis in vesicles during collapse of blood orange.


Subject(s)
Citrus sinensis , Citrus , Citrus sinensis/chemistry , Lignin/metabolism , Citrus/chemistry , Flavonoids/analysis , Metabolomics , Fruit/chemistry
4.
Environ Sci Pollut Res Int ; 30(11): 29909-29920, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36418821

ABSTRACT

Multi-media environmental distribution of 21 pharmaceuticals in river water, coastal water, groundwater and sediments from the Jin River to adjacent marine embayment, Southeast China, was reported for the first time. All the detected 10 pharmaceuticals were antibiotics. Oxytetracycline (OTC), ciprofloxacin (CFC) and enrofloxacin (EFC) were the most ubiquitous antibiotics and could be detected in all water samples. EFC also showed the highest detection frequency (100%) in both riverine and coastal sediments. The detected antibiotics were more widely distributed in coastal environment of Asia, especially China, rather than Europe, USA and Australia. Sulfamethoxazole (SMX) showed stronger sorption onto sediments compared with other antibiotics due to its higher pseudo-partitioning coefficients (846-10,786 L kg-1). The discharged wastewater and aquaculture were the main sources of antibiotics in the multi-media environment. Risk assessment indicated that CFC and SMX posed high risks to Microcystis aeruginosa and Synechococcus leopolensis in river water, coastal water and groundwater.


Subject(s)
Rivers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring , Anti-Bacterial Agents/analysis , China , Sulfamethoxazole , Ciprofloxacin , Enrofloxacin , Pharmaceutical Preparations , Water , Risk Assessment
5.
Chemosphere ; 311(Pt 2): 137118, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36336016

ABSTRACT

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX), widely used as a livestock feed additive, is excreted untransformed in large concentrations. Accumulation of this manure in the open environment increases dissolved organic matter (DOM) and ROX in soil within the aeration zone. And microbial action plays a dominant role in the transformation of ROX. However, the specific effect of DOM on the biotransformation of ROX is not known. In this paper, we investigated the transformation rate, metabolite content, and microbial community response of ROX in soils with different DOM concentrations (71.61, 100, 200, 500, and 800 mg L-1). The transformation of ROX was consistent with first-order transformation kinetics. DOM promoted the transformation of ROX, and with high DOM (DOM ≥200 mg L-1), ROX was transformed almost completely within two days. In this case, DOM provided nutrients to microorganisms and promoted their growth, accelerating the transformation of ROX. Also, the solubility of ROX was enhanced by DOM to increase its bioavailability. The microbial diversity was negatively correlated with DOM concentration and ROX transformation time; during the transformation of ROX, Bacillus, Arthrobacter, Enterococcus, Acinetobacter, and Pseudomonas became dominant in the soil with anomalously high levels of DOM. This study demonstrates the transformation process of ROX under actual environmental conditions where organic matter coexists with ROX, and this understanding is important for the prevention and control of arsenic pollution in soil within the aeration zone with anomalously high levels of DOM.

6.
Bull Environ Contam Toxicol ; 108(6): 1026-1032, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35066595

ABSTRACT

Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) levels were determined in surface water, groundwater and sediments of the Jin River Basin, southeastern China. PFOA was detected in most of the samples, and its concentrations ranged from 0.53 to 8.77 ng/L, 0.26 to 15.1 ng/L and not detected (ND) to 23.9 ng/g in surface water, groundwater and sediments, respectively. Unlike PFOA, the detection frequency of PFOS was lower than 32%, and its concentrations ranged from ND to 2.56 ng/L, ND to 7.01 ng/L, ND to 11.1 ng/g in surface water, groundwater and sediments, respectively. The environmental risk assessment showed that PFOA could pose a high risk to surface water and groundwater, and both PFOA and PFOS posed a high risk to sediments. Moreover, the adults living in the Jin River Basin were at insignificant health risk to exposure to PFOA and PFOS through water consumption.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Caprylates , China , Fluorocarbons/analysis , Risk Assessment , Rivers , Water , Water Pollutants, Chemical/analysis
7.
Chemosphere ; 278: 130438, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34126682

ABSTRACT

Arsenic is frequently found in poultry waste, most of which is transformed from feed additive organoarsenicals, resulting in arsenic pollution of soils and water around poultry farms. The North China Plain, an important area for livestock breeding of China, was chosen to investigate the pollution characteristics and assess the health risk of arsenic around chicken farms. Among the 138 chicken farms sampled, almost no roxarsone, a common organoarsenical, was detected in chicken feeds, manure, and surface soils, while the detectable rate of other arsenic species was high. Because of long-term enrichment, the concentrations of arsenic species in manure were generally higher than that in feed. As(III) was the main inorganic arsenic species in the manure, where is reducing environment. In surface soils beneath the accumulated manure, As(V) was the predominant arsenic species with 100% detectable rate. The detectable rate and average concentrations at 0 cm were generally higher than those at 25 cm depth, indicating that arsenic accumulated in the surface soils. In addition, a typical conceptual diagram of arsenic was developed to clarify the pollution process from feed to soil. Through health risk assessment of inorganic arsenic, the carcinogenic risk (CR) and non-carcinogenic risk (non-CR) were both negligible. The city of Jiaozuo had the highest CR and non-CR, which was 11 times higher than that of the city with the lowest risks. This study presents a clear picture and evaluation of arsenic pollution on chicken farms, inspiring future studies assessing arsenic pollution after the ban of organoarsenicals.


Subject(s)
Arsenic , Soil Pollutants , Animals , Arsenic/analysis , Chickens , China , Farms , Manure , Risk Assessment , Soil , Soil Pollutants/analysis
8.
Microbiologyopen ; 9(4): e1003, 2020 04.
Article in English | MEDLINE | ID: mdl-32053294

ABSTRACT

The degradation of roxarsone, an extensively used organoarsenic feed additive, occurs quickly under anaerobic conditions with microorganisms playing an important role in its degradation. Here, an anaerobic bacterial consortium that effectively degraded roxarsone was isolated, and its degradation efficiency and community changes along a roxarsone concentration gradient under anaerobic conditions were assessed. We used batch experiments to determine the roxarsone degradation rates, as well as the bacterial community structure and diversity, at initial roxarsone concentrations of 50, 100, 200, and 400 mg/kg. The results showed that roxarsone was degraded completely within 28, 28, 36, and 44 hr at concentrations of 50, 100, 200, and 400 mg/kg, respectively. The anaerobic bacterial consortium displayed considerable potential to degrade roxarsone, as the degradation rate increased with increasing roxarsone concentrations. Roxarsone promoted microbial growth, and in turn, the microorganisms degraded the organoarsenic compound, with the functional bacterial community varying between different roxarsone concentrations. Lysinibacillus, Alkaliphilus, and Proteiniclasticum were the main genera composing the roxarsone-degrading bacterial community.


Subject(s)
Bacteria, Anaerobic/metabolism , Manure/analysis , Roxarsone/analysis , Roxarsone/metabolism , Animal Feed/analysis , Animals , Biodegradation, Environmental , Microbial Consortia/physiology , Poultry
9.
Article in English | MEDLINE | ID: mdl-28276888

ABSTRACT

The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.


Subject(s)
Environmental Monitoring/methods , Microbial Consortia/drug effects , Roxarsone/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Soil/chemistry , Animals , Biodegradation, Environmental , Biodiversity , Dose-Response Relationship, Drug , Kinetics , Roxarsone/chemistry , Soil Pollutants/chemistry
10.
Can J Microbiol ; 63(8): 661-670, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28177786

ABSTRACT

Roxarsone is a feed additive widely used in the broiler and swine industries that has the potential to contaminate the environment, mainly via the use of poultry manure as fertilizer, which results in release of inorganic arsenic to the soil and water. This study was conducted to investigate roxarsone degradation and the response of the microbial community under different culture conditions using high-throughput sequencing technology. Poultry litter was incubated for 288 h in the presence of roxarsone under light aerobic, dark aerobic, or dark anaerobic conditions. The results showed that roxarsone was completely degraded after 48 h of dark anaerobic incubation, while 79.9% and 94.5% of roxarsone was degraded after 288 h of dark aerobic and light aerobic incubation, respectively. Under dark aerobic conditions with microbial inhibitor sodium azide, roxarsone was rarely degraded during the 288 h of incubation, illustrating that microorganisms play an important role in roxarsone degradation. Microbial community structure was significantly different among various culture conditions. Olivibacter, Sphingobacterium, and Proteiniphilum were the top 3 genera in the control samples. Sphingobacterium and Alishewanella dominated the light aerobic samples, while the dominant microflora of the dark aerobic samples were Acinetobacter spp. Pseudomonas and Advenella were the predominant genera of dark anaerobic samples. This study emphasizes the potential importance of microbes in roxarsone degradation and expands our current understanding of microbial ecology during roxarsone degradation under different environmental conditions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biodegradation, Environmental , Food Additives/pharmacology , Roxarsone/pharmacology , Soil Microbiology , Animals , Chickens , Fertilizers , Manure , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...