Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 467: 133647, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335608

ABSTRACT

The excessive use of tetracycline poses a threat to human health, making it essential to monitor and regulate its usage. While whole-cell biosensors offer a simple and cost-effective method, their utility is constrained by limitations in sensitivity, portability, and robustness, hindering real-time measurements within complex environmental contexts. In this study, a ratiometric i/cTetR synthetic biosensing test strip with an engineered modified dual-fluorescence reporting was developed for detecting Tet antibiotics in water and food. First, the standardized unidirectional promoter PtetR by tailoring and screening TetR transcription factor binding sites and verified by molecular docking, shortening the detection time. Secondly, decoupling the sensing and reporting modules enhances the biosensor's performance, eliminating genetic background leakage and tripling the output signal. Thirdly, a ratiometric dual fluorescence signal i/cTetR biosensing test strip was designed. Under the light box LED/UV light source, the dual signal output method significantly reduced false negative results and enhanced the anti-interference capability of the biosensor. The i/cTetR strips can detect Tet in tap water (5-1280 µg/mL) and milk (50-3200 µg/kg) within 45 min in high volume on-site without separation and purification. This study provides a standardized and universal sensing method for the field detection of antibiotic contaminants.


Subject(s)
Biosensing Techniques , Tetracycline , Humans , Molecular Docking Simulation , Anti-Bacterial Agents/analysis , Coloring Agents , Biosensing Techniques/methods , Water
2.
Biosens Bioelectron ; 251: 116132, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38382270

ABSTRACT

Early detection of Toxoplasma gondii (T. gondii) is critical due to a lack of effective treatment for toxoplasmosis.This study established a simple, cost-effective, and rapid colorimetric detection method for T. gondii. The entire testing process, from sample collection to results, takes only 0.5 h. These characteristics fulfill the demands of researchers seeking rapid target detection with minimal equipment reliance. For genomic extraction, this study evaluated the ability of two filter papers to capture genomes. A rapid genomic extraction device combined with the two filter papers was designed to simplify the genomic extraction process, which was completed within 10 min and increased the detection sensitivity tenfold. The method utilized a simplified primer design for isothermal amplification, namely allosteric strand displacement (ASD), and employed an underutilized commercial color indicator, Bromothymol Blue (BTB), for signal output. Compared with other reported indicators, BTB exhibited a more pronounced color change, shifting from blue to yellow in positive samples, facilitating easier visual differentiation. The reaction was completed in 20 min with a limit of detection (LOD) as low as 0.014 T. gondii per microliter.


Subject(s)
Biosensing Techniques , Toxoplasma , Toxoplasma/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , DNA, Protozoan/genetics , Bromthymol Blue
3.
Food Chem Toxicol ; 178: 113937, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37433354

ABSTRACT

Mercury contamination in food poses a significant threat to human health. In this article, we propose a novel approach to solve this problem by enhancing the function of gut microbiota against mercury using a synthetically engineered bacterial strain. An engineered Escherichia coli biosensor MerR with mercury binding function was introduced into the intestines of mice for colonization, whereafter the mice were challenged with oral mercury. Compared with the control mice and mice colonized with unengineered Escherichia coli, the mice with biosensor MerR cells in their gut showed significantly stronger mercury resistance. Furthermore, mercury distribution analysis revealed that biosensor MerR cells promoted the excretion of oral mercury with feces, thereby blocking the entry of mercury into the mice, decreasing the concentration of mercury in the circulatory system and organs, and, thus, attenuating the toxicity of mercury to the liver, kidneys and intestines. Colonization with the biosensor MerR did not result in significant health problems in the mice, nor were genetic circuit mutations or lateral transfers identified during the experiments, thus demonstrating the safety of this approach. This study elucidates the remarkable promise of synthetic biology for modulating gut microbiota function.


Subject(s)
Mercury , Humans , Animals , Mice , Mercury/analysis , Bacteria/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
4.
Biosens Bioelectron ; 170: 112660, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33011618

ABSTRACT

As optical reporting elements, fluorescent proteins are extensively used in whole-cell microbial biosensors. However, the use of these optical reporters is limited in opaque media such as soil. This study described a method utilizing gas as a reporting signal that could be used for the rapid on-site detection of mercury in soil. In this biosensor, the MerR protein could capture mercury ions and then bind the promoter of the efe gene to initiate the synthesis of the ethylene (C2H4)-forming enzyme that produced the gas. The research showed that the mercury ion concentrations could be converted into C2H4 gas signals, which were quantified using a handheld C2H4 sensor. By optimizing the biosensor to improve its anti-interference ability in the system, it could detect mercury ion concentrations in the soil ranging from 0.2 to 20 mg/kg within 45 min, effectively reflecting whether the mercury pollution in the soil exceeded the limit standard. This study provides a simple, inexpensive, and portable method for the on-site detection of soil pollutants.


Subject(s)
Biosensing Techniques , Mercury , Soil Pollutants , Environmental Monitoring , Mercury/analysis , Promoter Regions, Genetic , Soil , Soil Pollutants/analysis
5.
Biosens Bioelectron ; 150: 111899, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31767350

ABSTRACT

Mercury pollutants such as mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2) and mercuric ammonium chloride (Hg(NH2)Cl) are often found in cosmetics. Previous attempts at the on-site detection of mercury were hindered by the complicated and dangerous pretreatment procedure of converting various forms of mercury to Hg (II) ions. In this study, a test strip platform was developed based on a whole-cell microbial biosensor for the simultaneous detection of soluble and insoluble inorganic mercury pollutants in cosmetics without the need for predigestion. The genetic circuits with constitutively expressed MerR as sensor proteins and inducible red fluorescent protein (RFP) as the reporter were introduced into Escherichia coli to construct the mercury detection biosensor. The RFP fluorescence intensity of this biosensor showed a excellent linear relationship (R2 = 0.9848) with the Hg (II) concentration ranging from 50 nM to 10 µM in Luria-Bertani (LB) broth. Further research indicated that this biosensor could respond not only to Hg (II) ions but also to insoluble Hg2Cl2 and Hg2Cl2. The transcriptomic results confirmed the mercury conversion ability of the whole-cell biosensor from a gene expression perspective. This biosensor was embedded on filter paper to form a test strip, which could be used to determine whether the total inorganic mercury pollutants in cosmetics exceeded 1 mg/kg. Therefore, this strip provided a low cost, easy-to-use, and instrument-independent method for the detection of mercury pollution in cosmetics, while this study revealed the unique advantages of microbial biosensors in the automatic bioconversion of targets.


Subject(s)
Biosensing Techniques/methods , Cosmetics/analysis , Environmental Pollutants/analysis , Mercury Compounds/analysis , Mercury/analysis , Escherichia coli/drug effects , Escherichia coli/genetics , Reagent Strips/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...