Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
Sci Rep ; 14(1): 11153, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750224

ABSTRACT

The Patient-Reported Outcomes Measurement Information System 29-item Profile version 2.1 (PROMIS-29 V2.1) is a widely utilized self-reported instrument for assessing health outcomes from the patients' perspectives. This study aimed to evaluate the psychometric properties of the PROMIS-29 V2.1 Chinese version among patients with hematological malignancy. Conducted as a cross-sectional, this research was approved by the Medical Ethical Committee of the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (registration number QTJC2022002-EC-1). We employed convenience sampling to enroll eligible patients with hematological malignancy from four tertiary hospitals in Tianjin, Shandong, Jiangsu, and Anhui province in China between June and August 2023. Participants were asked to complete a socio-demographic information questionnaire, the PROMIS-29 V2.1, and the Functional Assessment of Cancer Therapy-General (FACT-G). We assessed the reliability, ceiling and floor effects, structural, convergent discriminant and criterion validity of the PROMIS-29 V2.1. A total of 354 patients with a mean age of 46.93 years was included in the final analysis. The reliability of the PROMIS-29 V2.1 was affirmed, with Cronbach's α for the domains ranging from 0.787 to 0.968. Except sleep disturbance, the other six domains had ceiling effects, which were seen on physical function (26.0%), anxiety (37.0%), depression (40.4%), fatigue (18.4%), social roles (18.9%) and pain interference (43.2%), respectively. Criterion validity was supported by significant correlations between the PROMIS-29 V2.1 and FACT-G scores, as determined by the Spearman correlation test (P < 0.001). Confirmatory factor analysis (CFA) indicated a good model fit, with indices of χ2/df (2.602), IFI (0.960), and RMSEA (0.067). The Average Variance Extracted (AVE) values for the seven dimensions of PROMIS-29 V2.1, ranging from 0.500 to 0.910, demonstrated satisfactory convergent validity. Discriminant validity was confirmed by ideal √AVE values. The Chinese version of the PROMIS-29 V2.1 profile has been validated as an effective instrument for assessing symptoms and functions in patients with hematological malignancy, underscoring its reliability and applicability in this specific patient group.


Subject(s)
Hematologic Neoplasms , Psychometrics , Humans , Hematologic Neoplasms/psychology , Psychometrics/methods , Male , Female , Middle Aged , Adult , China , Cross-Sectional Studies , Reproducibility of Results , Patient Reported Outcome Measures , Quality of Life , Surveys and Questionnaires , Aged , Young Adult , Adolescent
2.
Adv Sci (Weinh) ; : e2401207, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704676

ABSTRACT

Developing high-efficiency and stable bifunctional electrocatalysts for water splitting remains a great challenge. Herein, NiMoO4 nanowires as sacrificial templates to synthesize Mo-doped NiFe Prussian blue analogs are employed, which can be easily phosphorized to Mo-doped Fe2xNi2(1-x)P nanotubes (Mo-FeNiP NTs). This synthesis method enables the controlled etching of NiMoO4 nanowires that results in a unique hollow nanotube architecture. As a bifunctional catalyst, the Mo-FeNiP NTs present lower overpotential and Tafel slope of 151.3 (232.6) mV at 100 mA cm-2 and 76.2 (64.7) mV dec-1 for HER (OER), respectively. Additionally, it only requires an ultralow cell voltage of 1.47 V to achieve 10 mA cm-2 for overall water splitting and can steadily operate for 200 h at 100 mA cm-2. First-principles calculations demonstrate that Mo doping can effectively adjust the electron redistribution of the Ni hollow sites to optimize the hydrogen adsorption-free energy for HER. Besides, in situ Raman characterization reveals the dissolving of doped Mo can promote a rapid surface reconstruction on Mo-FeNiP NTs to dynamically stable (Fe)Ni-oxyhydroxide layers, serving as the actual active species for OER. The work proposes a rational approach addressed by electron manipulation and surface reconstruction of bimetallic phosphides to regulate both the HER and OER activity.

3.
Opt Express ; 32(7): 12141-12159, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571046

ABSTRACT

It is important to determine the relationship between the concentration of chlorophyll a (Chla) and the inherent optical properties (IOPs) of ocean water to develop optical models and algorithms that characterize the biogeochemical properties and estimate biological pumping and carbon flux in this environment. However, previous studies reported relatively large variations in the particulate backscattering coefficient (bbp(λ)) and Chla from more eutrophic high-latitude waters to clear oligotrophic waters, especially in oligotrophic oceanic areas where these two variables have little covariation. In this study, we examined the variability of bbp(λ) and Chla in the euphotic layer in oligotrophic areas of the tropical Western Pacific Ocean and determined the sources of these variations by reassessment of in-situ measurements and the biogeochemical-argo (BGC-Argo) database. Our findings identified covariation of bbp(λ) and Chla in the water column below the deep Chla maximum (DCM) layer, and indicated that there was no significant correlation relationship between bbp(λ) and Chla in the upper layer of the DCM. Particles smaller than 3.2 µm that were in the water column above the DCM layer had a large effect on the bbp(λ) in the vertical profile, but particles larger than 3.2 µm and smaller than 10 µm had the largest effect on the bbp(λ) in the water column below the DCM layer. The contribution of non-algal particles (NAPs) to backscattering is up to 50%, which occurs in the water depth of 50 m and not consistent with the distribution of Chla. Phytoplankton and NAPs were modeled as coated spheres and homogeneous spherical particles to simulate the bbp(λ) of the vertical profile by Aden-Kerker method and Mie theory, and the results also indicated that the backscattering caused by particles less than 20 µm were closer to the measured data when they were below and above the DCM layer, respectively. This relationship also reflects the bbp(λ) of particles in the upper water was significantly affected particle size, but bbp(λ) in the lower water was significantly affected by Chla concentration. This effect may have relationship with phytoplankton photoacclimation and the relationship of a phytoplankton biomass maximum with particle size distribution in the water column according to the previous relevant studies. These characteristics also had spatial and seasonal variations due to changes of Chla concentration at the surface and at different depths. There was mostly a linear relationship between Chla and bbp(700) during winter. During other seasons, the relationship between these two variables was better characterized by a power function (or a logarithmic function) in the lower layer of the DCM. The spatial and vertical relationships between the bbp(λ) and Chla and the corresponding variations in the types of particles described in this study provide parameters that can be used for accurate estimation of regional geochemical processes.


Subject(s)
Chlorophyll , Water , Chlorophyll A , Pacific Ocean , Oceans and Seas , Biomass , Phytoplankton/chemistry
4.
Thorax ; 79(5): 465-471, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38490721

ABSTRACT

BACKGROUND: Serum cytokines correlate with tuberculosis (TB) progression and are predictors of TB recurrence in people living with HIV. We investigated whether serum cytokine biosignatures could diagnose TB among HIV-positive inpatients. METHODS: We recruited HIV-positive inpatients with symptoms of TB and measured serum levels of inflammation biomarkers including IL-2, IL-4, IL-6, IL-10, tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). We then built and tested our TB prediction model. RESULTS: 236 HIV-positive inpatients were enrolled in the first cohort and all the inflammation biomarkers were significantly higher in participants with microbiologically confirmed TB than those without TB. A binary support vector machine (SVM) model was built, incorporating the data of four biomarkers (IL-6, IL-10, TNF-α and IFN-γ). Efficacy of the SVM model was assessed in training (n=189) and validation (n=47) sets with area under the curve (AUC) of 0.92 (95% CI 0.88 to 0.96) and 0.85 (95% CI 0.72 to 0.97), respectively. In an independent test set (n=110), the SVM model yielded an AUC of 0.85 (95% CI 0.76 to 0.94) with 78% (95% CI 68% to 87%) specificity and 85% (95% CI 66% to 96%) sensitivity. Moreover, the SVM model outperformed interferon-gamma release assay (IGRA) among advanced HIV-positive inpatients irrespective of CD4+ T-cell counts, which may be an alternative approach for identifying Mycobacterium tuberculosis infection among HIV-positive inpatients with negative IGRA. CONCLUSIONS: The four-cytokine biosignature model successfully identified TB among HIV-positive inpatients. This diagnostic model may be an alternative approach to diagnose TB in advanced HIV-positive inpatients with low CD4+ T-cell counts.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Cytokines , Interleukin-10 , Tumor Necrosis Factor-alpha , Inpatients , Interleukin-6 , Tuberculosis/complications , Tuberculosis/diagnosis , Interferon-gamma , HIV Infections/complications , Biomarkers , Inflammation
5.
Small ; : e2310530, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317526

ABSTRACT

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2 /CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2 CO3 nucleation sites for homogeneous discharge product growth. The CoSe2 /CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2 , a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2 , surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2 /Li adsorption and low Li2 CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2 /CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

6.
Polymers (Basel) ; 16(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337196

ABSTRACT

The development of polymeric materials for the repair and reinforcement of damaged sites in water has many practical applications, especially in ocean engineering. However, it is difficult to construct an anticorrosion coating in water. In addition, curing kinetics, which are the key to enhance the performance of coatings, seem to hardly be observed and regulated in an underwater condition. Herein, a novel underwater in situ repairing coating was prepared. Meanwhile, electrochemical impedance spectroscopy (EIS) was applied to observe its curing behavior underwater. Adhesion tests showed that the coatings cured underwater had good adhesion to different substrate surfaces and the ideal ratio of curing agent to epoxy resin was 0.6. Long-term anticorrosive tests demonstrated that the coatings had an excellent anti-corrosion performance. The viscosity changes in different curing stages were well reflected by frequency response characteristics from Bode and Nyquist curves by EIS. Two equivalent electrical circuits were selected to simulate the impedance date at the initial and final curing stage. A formula was put forward to evaluate the curing degree during the curing process. Finally, the effects of temperature and the ingredient ratio on the reaction rate and curing degree were also investigated here. This underwater in situ repairing coating may find applications in many offshore engineering structures in marine environments, and the EIS technique has attractive development and application prospects when observing the curing information of thermosetting resin systems under special circumstances.

7.
Small ; : e2311500, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372501

ABSTRACT

Singlet oxygen (term symbol 1 Δg , hereafter 1 O2 ), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1 O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1 O2 in particular aprotic lithium-oxygen (Li-O2 ) batteries are highlighted, and the applications of 1 O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1 O2 in energy conversion and storage systems are discussed.

8.
Food Res Int ; 178: 113901, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309860

ABSTRACT

The Maillard reaction occurs during the frying of batter-coated meat products, resulting in the production of advanced glycosylation products that are harmful to human health. This study investigated the effects of frying temperature (140, 150, 160, 170 and 180 ℃) and time (80, 100, 120, 140 and 160 s) on the quality, advanced glycation end product (AGE) level and the relationship between these parameters in batter-coated meat products were investigated. The results showed that with an increase in frying temperature and time, the moisture content of the batter-coated meat products gradually decreased, the thiobarbituric Acid Reactive Substance (TBARS) values and oil content increased to 0.37 and 21.7 %, respectively, and then decreased, and CML and CEL content increased to 7.30 and 4.86 mg/g, respectively. Correlation analysis showed that the moisture content and absorbance at 420 nm, as well as TBARS values, were highly correlated with the oil content in batter-coated meat products. Additionally, the absorbance at 420 nm and TBARS levels were significantly correlated with AGE levels. Moreover, the AGE content in batter-coated meat products was less variable at lower frying temperatures or shorter frying times, and the influence of temperature on AGE formation was greater than that of time. Overall, these findings may help to better control the cooking conditions of batter-coated meat products based on AGE profiles.


Subject(s)
Maillard Reaction , Meat Products , Humans , Glycation End Products, Advanced/analysis , Meat Products/analysis , Thiobarbituric Acid Reactive Substances , Lipids
9.
Sci Total Environ ; 919: 170805, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38342463

ABSTRACT

Human activities pose a significant threat to rivers, requiring robust assessment methods for effective river management. This study focuses on the Weihe River Basin in Shaanxi province and introduces the respirogram as an innovative assessment technique. The respirogram allows the simultaneous assessment of river health from two important aspects: pollution levels and microbial status. Specifically, the in-situ respiration ratio (Rs/t) serves as an indicator of pollution, with higher Rs/t values correlating with increased pollution levels. Conversely, the recovery index (RI) measures microbial vitality, with values below 0.15 indicating greater microbial activity and recovery potential. Using predefined thresholds of Rs/t = 0.3 and RI = 0.15, water bodies were categorized into four types. For example, rivers with Rs/t > 0.3 and RI > 0.15 were identified as receiving sewage, characterized by high pollution and low microbial vitality. Similarly, different assessment criteria delineated urban rivers, natural rivers, and wastewater treatment plants. Based on these classifications, targeted engineering measures were proposed to enhance the self-purification capabilities of rivers of different statuses.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Humans , Rivers , Environmental Pollution , Sewage , China , Water Pollutants, Chemical/analysis
10.
Nanomaterials (Basel) ; 14(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38202557

ABSTRACT

Ammonia (NH3) is vital in modern agriculture and industry as a potential energy carrier. The electrocatalytic reduction of nitrate (NO3-) to ammonia under ambient conditions offers a sustainable alternative to the energy-intensive Haber-Bosch process. However, achieving high selectivity in this conversion poses significant challenges due to the multi-step electron and proton transfer processes and the low proton adsorption capacity of transition metal electrocatalysts. Herein, we introduce a novel approach by employing functionalized multi-walled carbon nanotubes (MWCNTs) as carriers for active cobalt catalysts. The exceptional conductivity of MWCNTs significantly reduces charge transfer resistance. Their unique hollow structure increases the electrochemical active surface area of the electrocatalyst. Additionally, the one-dimensional hollow tube structure and graphite-like layers within MWCNTs enhance adsorption properties, thus mitigating the diffusion of intermediate and stabilizing active cobalt species during nitrate reduction reaction (NitRR). Using the MWCNT-supported cobalt catalyst, we achieved a notable NH3 yield rate of 4.03 mg h-1 cm-2 and a high Faradaic efficiency of 84.72% in 0.1 M KOH with 0.1 M NO3-. This study demonstrates the potential of MWCNTs as advanced carriers in constructing electrocatalysts for efficient nitrate reduction.

11.
Diabetologia ; 67(4): 738-754, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236410

ABSTRACT

AIMS/HYPOTHESIS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS: Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS: Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION: In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Humans , Female , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Metabolic Reprogramming , AMP-Activated Protein Kinases/metabolism , Sodium-Glucose Transporter 2/metabolism , Estivation , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Kidney/metabolism , Fasting , TOR Serine-Threonine Kinases/metabolism , Glycine/metabolism , Mammals/metabolism
12.
Nat Commun ; 15(1): 928, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296957

ABSTRACT

Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials.

13.
Chem Soc Rev ; 53(3): 1592-1623, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38167687

ABSTRACT

Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.


Subject(s)
Biocompatible Materials , Polymers , Hydrogen Bonding , Polymers/chemistry
14.
J Sci Food Agric ; 104(4): 1861-1873, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37851871

ABSTRACT

In recent years, the increase in high-calorie diets and sedentary lifestyles has made obesity a global public health problem. An unbalanced diet promotes the production of proinflammatory cytokines and causes redox imbalance in the body. Phenolics have potent antioxidant activity and cytoprotective ability. They can scavenge free radicals and reactive oxygen species, and enhance the activity of antioxidant enzymes, thus combating the body's oxidative stress. They can also improve the body's inflammatory response, enhance the enzyme activity of lipid metabolism, and reduce the contents of cholesterol and triglyceride. Most phenolics are biotransformed and absorbed into the blood after the action by gut microbiota; these metabolites then undergo phase I and II metabolism and regulate oxidative stress by scavenging free radicals and increasing expression of antioxidant enzymes. Phenolics induce the expression of genes encoding antioxidant enzymes and phase II detoxification enzymes by stimulating Nrf2 to enter the nucleus and bind to the antioxidant response element after uncoupling from Keap1, thereby promoting the production of antioxidant enzymes and phase II detoxification enzymes. The absorption rate of phenolics in the small intestine is extremely low. Most phenolics reach the colon, where they interact with the microbiota and undergo a series of metabolism. Their metabolites will reach the liver via the portal vein and undergo conjugation reactions. Subsequently, the metabolites reach the whole body to exert biological activity by traveling with the systemic circulation. Phenolics can promote the growth of probiotics, reduce the ratio of Firmicutes/Bacteroidetes (F/B), and improve intestinal microecological imbalance. This paper reviews the nutritional value, bioactivity, and antioxidant mechanism of phenolics in the body, aiming to provide a scientific basis for the development and utilization of natural antioxidants and provide a reference for elucidating the mechanism of action of phenolics for regulating oxidative stress in the body. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Gastrointestinal Microbiome , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Signal Transduction , Reactive Oxygen Species/metabolism
15.
Neural Netw ; 169: 325-333, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922715

ABSTRACT

Fine-tuning is an effective technique to enhance network performance in scenarios with limited labeled data. To achieve this, recent methods exploit the knowledge mined in the source model (e.g., feature maps) to construct an extra regularization signal (RS), collaboratively supervising the target model along with target labels. However, these RSs are generated independently from the target information or are generated from the rough assistance of the target information, resulting in biased supervision different from the target task. In this paper, we propose a Conditional Online Knowledge Transfer (COKT) framework that finely utilizes the target information to construct robust and target-related RS. Specifically, we train a target-dominant RS branch that online supervises the target model in a knowledge distillation manner. The target information dominates the RS branch from three aspects: sample-wise conditional attention, residual feature fusion, and target task loss. With such a target-oriented framework, we can effectively exploit target-related prior knowledge of the source model. Extensive experiments demonstrate that COKT significantly outperforms the fine-tuning baselines, especially for dissimilar target tasks and small datasets. Moreover, different from most of the fine-tuning methods that are restricted to the vanilla fine-tuning scenario, COKT can be easily extended to cross-model and multi-model fine-tuning scenarios.


Subject(s)
Information Dissemination , Knowledge , Neural Networks, Computer
16.
Meat Sci ; 209: 109414, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101288

ABSTRACT

Myosin heavy chain (MHC) isoforms and meat quality characteristics of different muscles were investigated to explore their potential relationships in yaks. Results showed that semitendinosus (ST), longissimus thoracis (LT), and infraspinatus (IS) have a greater ratio of MHC IIb (47.84%), MHC IIa (73.27%), and MHC I (24.26%), respectively, than the other two muscles. Compared with LT or ST, IS exhibited more intense color, greater water-holding capacity, and initial tenderness with higher intermuscular fat (IMF) and collagen (of lower cross-linking level), presenting overall better quality. Variations in MHC isoforms accounted for the muscle-specific meat quality. Specifically, MHC I was positively associated with redness, myoglobin, IMF, collagen, pH, and thermal stability and negatively associated with myofibril fragmentation index, fiber thickness, collagen cross-linking, and drip loss. These results provide insights into the relationships between MHC isoforms and meat quality in yaks and the MHC I isoform has an extensive influence on meat quality.


Subject(s)
Muscle, Skeletal , Myosin Heavy Chains , Animals , Cattle , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Protein Isoforms/metabolism , Meat/analysis , Collagen/metabolism
17.
Anal Methods ; 16(2): 284-292, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38113049

ABSTRACT

A study on the inactivation and germination mechanism of spores is very important in the application of spores, as such high-purity spores are the basis of related research. However, spores and vegetative cells of bacteria often coexist, and it is difficult to separate them. In this study, a magnetic flow device for the purification of spores in the culture medium system was developed based on a "stepped" structure with a magnetic force that could absorb vegetative cells with magnetic nanoparticles. The operation process was as follows: first, vancomycin functionalized nanoparticles were used to prepare Van-Fe3O4 NPs, which were then combined with vegetative cells to form a magnetic conjugate. Subsequently, the magnetic conjugate (vegetative cells) flowed through the "stepped" magnetic flow device and was adsorbed. Meanwhile, the spores moved through the channel and were collected. The achieved purity of the collected spores was more than 95%. Further, the number of the obtained spores was quickly quantified using Raman spectroscopy. The entire purification and quantitative process can be completed within 30 min and the limit of detection was 5 CFU mL-1. This study showed outstanding spore purification ability and provided a new method for purification and rapid quantitative detection of spores.


Subject(s)
Spores, Bacterial , Spores , Spores, Bacterial/physiology , Bacteria , Culture Media , Magnetic Phenomena
18.
Med Biol Eng Comput ; 61(12): 3181-3191, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38093154

ABSTRACT

Image registration of magnetic resonance imaging (MRI) pre- and post-therapy is an important part of evaluating the effect of therapy in tumor patients. The accuracy of evaluation results heavily relies on the alignment of the MRI image after registration. Although recent advancements have been made in medical image registration, applying these methods to MRI registration pre- and post-therapy remains challenging. Existing methods typically utilize single-view data for registration. However, when applied to MRI data where some slices are clear while others are blurred, these methods can be misled by erroneous spatial information in the blurred regions, leading to poor registration outcomes. To mitigate the interference caused by erroneous spatial information in single-view data, this paper proposes a multi-stream fusion-assisted registration network that incorporates different-view MRIs of the same patient at the same site. Additionally, a cross-attention guided fusion module is designed within the network to effectively utilize accurate spatial information from multi-view data. The proposed approach was evaluated on clinical data, and the experimental results demonstrated that incorporating multiple view data as auxiliary information significantly enhances the accuracy of MRI image registration before and after radiotherapy.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
19.
Heliyon ; 9(11): e21765, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027989

ABSTRACT

Metal hydrides have been demonstrated as one of the promising high-capacity anode materials for Li-ion batteries. Herein, we report the electrochemical properties and lithium storage mechanism of a Li-rich complex metal hydride (Li3AlH6). Li3AlH6 exhibits a lithiation capacity of ∼1729 mAh/g with a plateau potential of ∼0.33 V vs. Li+/Li at the first discharge cycle. Experimental results demonstrate that Li3AlH6 is converted into LiH and LiAl in the initial electrochemical lithiation process. In addition, Li3AlH6 also possesses a good cycling stability that 71 % of the second discharge capacity is retained after 20 cycles. More importantly, the cycling performance of Li3AlH6 can be improved to 100 cycles via adjusting electrolyte composition. This study provides a new approach for developing the lithium storage properties of anode materials for Li-ion batteries.

20.
Dalton Trans ; 53(1): 162-170, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38018516

ABSTRACT

The energy-intensive processes for the industrial production of ammonia necessitates the development of new methods to be proposed that will aid in reducing the global energy consumption. Specifically, the electrocatalytic nitrate reduction reaction (NO3RR) to produce ammonia is more thermodynamically feasible than the electrocatalytic nitrogen reduction reaction (NRR). However, it is hindered by a low catalytic activity due to its complex reaction pathways. Herein, we synthesized a novel electrocatalyst, RuOx-Co3O4 nanoparticles, with abundant interfaces, which exhibited an enhanced catalytic activity for efficient ammonia synthesis. This catalyst delivered a partial current density of 65.8 mA cm-2 for NH3 production, a faradaic efficiency (FE) of 89.7%, and a superior ammonia yield rate of up to 210.5 µmol h-1 cm-2 at -0.6 V vs. RHE. X-ray photoelectron and Raman spectroscopy revealed that the formed interfacial Ru-O-Co bond can decorate the electronic structures of the active sites and accelerate the absorption of NO3-, thus promoting the production of ammonia.

SELECTION OF CITATIONS
SEARCH DETAIL
...