Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
ACS Omega ; 9(14): 16486-16495, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617698

ABSTRACT

Spraying harvesting aids is an important step before the mechanical harvesting of cotton. To clarify the direct relationship between the droplet density and the defoliation effect of cotton harvest aid solutions, we evaluated the relationship between the droplet density and the defoliation effect. The determination method and evaluation standard of the number of droplets required per square centimeter to achieve 50% leaves defoliation (DN50) of the harvest aid solution were further explored. The results revealed a linear relationship between the droplet density and the cotton defoliation rate when the spraying volume was 22.5 L/ha and the harvest aid dosage was 1/2 and 2/3 of the recommended dosage. When the harvest aid dosage was 5/6 and 1 times the recommended dosage, the relationship between the droplet density and the defoliation rate of cotton was logarithmic. The DN50 of the low-concentration harvest aid solution (450 L/ha) was significantly higher than that of the high-concentration solution (22.5 L/ha). The addition of spray adjuvant Beidatong significantly reduced the DN50 of cotton harvest aids. The field experiment showed that the droplet density increased with the increase of the spraying volume sprayed by unmanned aerial vehicles. There was a positive correlation between the spraying volume and the defoliation effect after changes in the cotton harvest aid dosage. When the dosage of Mianhai (MH) was 5/6 of the recommended dosage, the defoliation effect at the spraying volumes of 22.5, 27.0, and 30.0 L/ha reached the peak values at 71.54, 78.56, and 83.23%, respectively. This study proposed the concept of DN50 and its determination method. The fitting equations between the droplet density and defoliation effect and between the harvest aid concentration and defoliation effect were established to provide a theoretical basis for the scientific spraying of cotton harvest aid solutions.

2.
Sci Total Environ ; 928: 172597, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38642753

ABSTRACT

Solar-driven interfacial water purification emerges as a sustainable technology for seawater desalination and wastewater treatment to address the challenge of water scarcity. Currently, the energy losses via radiation and convection to surrounding environment minimize its energy efficiency. Therefore, it is necessary to develop strategies to minimize the heat losses for efficient water purification. Here, a novel evaporator was developed through the in situ gelation of PAM hydrogel on the surface carbonized hydroponic bamboo (PSC) to promote energy efficiency. The inherent porous and layered network structures of bamboo, in synergy with the functional hydration capacity of PAM hydrogel, facilitated adequate water transportation, while reducing evaporation enthalpy. The PAM hydrogel firmly covered on the photothermal layer surface effectively minimized the radiation and convection heat losses, while further harvesting those thermal energy that would otherwise dissipate into the surrounding environment. The reduced thermal conductivity of PSC served as a thermal insulator as well, obstructing heat transfer to bulk water and thus diminishing conduction losses. Consequently, the rational designed PSC could efficiently convert solar energy to purified water, leading to the evaporation of 2.09 kg m-2 h-1, the energy efficiency of 87.6 % under one sun irradiation, and yielding 9.6 kg m-2 fresh water over 11 h outdoor operation. Moreover, the PSC also performs excellent salt rejection, and long-term stability at outdoor experiment. These results demonstrated high and stable solar evaporation performance could be achieved if turning heat losses into a way of extra energy extraction to further enhance the evaporation performance. This strategy appears to be a promising strategy for effective thermal energy management and practical application.

3.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 635-645, 2024 May.
Article in English | MEDLINE | ID: mdl-38197588

ABSTRACT

Biotin (BI) and cobalamin (CA) are essential for rumen propionate production and hepatic gluconeogenesis. The study evaluated the influence of BI or/and coated CA (CCA) on milk performance and nutrient digestion in cows. Sixty Holstein dairy cows were assigned in a 2 × 2 factorial arrangement and randomised block design to four groups. The factors were BI at 0 or 20 mg/day and CCA at 0 or 9 mg CA/day. Dry matter intake increased with BI addition but was unchanged with CCA supply. Addition of BI or CCA increased fat-corrected milk, milk fat and milk protein yields and feed efficiency. Moreover, lactose yield was increased by CCA addition. Dry matter, organic matter, crude protein and acid detergent fibre total-tract digestibility increased for BI or CCA supply. When CCA was supplemented, positive response of neutral detergent fibre digestibility to BI addition was enhanced. Supplementing BI did not affect pH, propionate content and acetate to propionate ratio, but increased total volatile fatty acids (VFA) and acetate contents. Supplementing CCA decreased pH and acetate to propionate ratio, but increased total VFA, acetate and propionate contents. Rumen protease and carboxymethyl-cellulase activities and fungi, bacteria and Butyrivibrio fibrisolvens numbers increased for BI or CCA supply. In addition, protozoa increased for BI addition, and protease activity and Prevotella ruminicola increased for CCA supply. When CCA was supplemented, positive responses of R. albus and Ruminobacter amylophilus numbers to BI addition were enhanced. Blood glucose concentration was unchanged with BI supply, but increased for CCA supply. Blood nonesterified fatty acids and ß-hydroxybutyrate contents reduced with BI or CCA supply. Supplementation with BI or CCA increased blood BI or CA content. The results showed that supplementing BI or/and CCA improved lactation performance and nutrient digestion, and CCA supply did not enhance the lactation performance response to BI supply.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Biotin , Diet , Digestion , Fermentation , Lactation , Rumen , Vitamin B 12 , Animals , Cattle/physiology , Female , Animal Feed/analysis , Biotin/administration & dosage , Biotin/pharmacology , Diet/veterinary , Dietary Supplements , Digestion/drug effects , Fermentation/drug effects , Lactation/drug effects , Lactation/physiology , Milk/chemistry , Rumen/drug effects , Rumen/physiology , Vitamin B 12/pharmacology , Vitamin B 12/administration & dosage
4.
Anim Biotechnol ; 35(1): 2290526, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38085574

ABSTRACT

The objective of this experiment was to evaluate the influence of nanoselenium (NANO-Se) addition on milk production, milk fatty acid synthesis, the development and metabolism regulation of mammary gland in dairy cows. Forty-eight Holstein dairy cows averaging 720 ± 16.8 kg of body weight, 66.9 ± 3.84 d in milk (dry matter intake [DIM]) and 35.2 ± 1.66 kg/d of milk production were divided into four treatments blocked by DIM and milk yields. Treatments were control group, low-Se (LSe), medium-Se (MSe) and high-Se (HSe) with 0, 0.1, 0.2 and 0.3 mg Se, respectively, from NANO-Se per kg dietary dry matter (DM). Production of energy- and fat-corrected milk (FCM) and milk fat quadratically increased (p < 0.05), while milk lactose yields linearly increased (p < 0.05) with increasing NANO-Se addition. The proportion of saturated fatty acids (SFAs) linearly decreased (p < 0.05), while proportions of monounsaturated fatty acids (MUFAs) linearly increased and polyunsaturated fatty acids (PUFAs) quadratically increased. The digestibility of dietary DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) quadratically increased (p < 0.05). Ruminal pH quadratically decreased (p < 0.01), while total VFA linearly increased (p < 0.05) with increasing NANO-Se addition. The acetic to propionic ratio decreased (p < 0.05) linearly due to the unaltered acetic molar percentage and a quadratical increase in propionic molar percentage. The activity of CMCase, xylanase, cellobiase and pectinase increased linearly (p < 0.05) following NANO-Se addition. The activity of α-amylase increased linearly (p < 0.01) with an increase in NANO-Se dosage. Blood glucose, total protein, estradiol, prolactin, IGF-1 and Se linearly increased (p < 0.05), while urea nitrogen concentration quadratically decreased (p = 0.04). Moreover, the addition of Se at 0.3 mg/kg from NANO-Se promoted (p < 0.05) mRNA and protein expression of PPARγ, SREBP1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2 and the ratios of p-ACACA/ACACA and BCL2/BAX4, but decreased (p < 0.05) mRNA and protein expressions of Bax, Caspase-3 and Caspase-9. The results suggest that milk production and milk fat synthesis increased by NANO-Se addition by stimulating rumen fermentation, nutrients digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.


Subject(s)
Detergents , Lactation , Female , Cattle , Animals , Lactation/physiology , Detergents/metabolism , Detergents/pharmacology , Digestion/physiology , Milk/metabolism , Diet/veterinary , Nutrients , Dietary Supplements , RNA, Messenger/metabolism , Rumen/metabolism , Animal Feed/analysis
5.
Anim Nutr ; 15: 137-148, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38023376

ABSTRACT

This experiment was to evaluate the influence of sodium butyrate (SB) addition on milk production, ruminal fermentation, nutrient digestion, and the development and metabolism regulation of the mammary gland in dairy cows. Forty Holstein dairy cows averaging 710 ± 18.5 kg body weight, 72.8 ± 3.66 d in milk (DIM), and 41.4 ± 1.42 kg/d milk production were divided into four treatments blocked by DIM and milk production. Treatments were control group, low SB, medium SB, and high SB with 0, 100, 200 and 300 g/d of SB addition per cow, respectively. The study lasted for 105 d. Production of milk, milk protein and lactose quadratically increased (P < 0.05), while fat-corrected milk, energy-corrected milk and milk fat yields linearly increased (P < 0.05) with increasing SB addition. The digestibility of dietary dry matter, organic matter, and crude protein linearly increased (P < 0.05), whereas the digestibility of ether extract, neutral detergent fibre, and acid detergent fibre quadratically increased (P < 0.05). Ruminal pH quadratically decreased (P = 0.04), while total volatile fatty acids (VFA) quadratically increased (P = 0.03) with increasing SB addition. The acetic acid to propionic acid ratio increased (P = 0.03) linearly due to the unaltered acetic acid molar percentage and a linear decrease in propionic acid molar percentage. Ruminal enzymatic activity of carboxymethyl-cellulase and α-amylase, populations of total bacteria, total anaerobic fungi, total protozoa, Ruminococcus albus, R. flavefaciens, Butyrivibrio fibrisolvens, Fibrobacter succinogenes, and Ruminobacter amylophilus linearly increased (P < 0.05). Blood glucose, urea nitrogen, and non-esterified fatty acids linearly decreased (P < 0.05), while total protein concentration linearly increased (P = 0.04). Moreover, the addition of SB at 200 g/d promoted (P < 0.05) mRNA and protein expression of PPARγ, SREBF1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2, GPR41, and the ratios of p-Akt/Akt and p-mTOR/mTOR, but decreased (P < 0.05) mRNA and protein expressions of Bax, caspase-3, and caspase-9. The results suggest that milk production and milk fat synthesis increased with SB addition by stimulating rumen fermentation, nutrient digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.

6.
Animals (Basel) ; 13(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570334

ABSTRACT

Considering the synergistic effect of pantothenate and thiamine on the regulation of energy metabolism, this study investigated the influences of coated calcium pantothenate (CCP) and coated thiamine (CT) on milk production and composition, nutrients digestion, and expressions of genes involved in fatty acids synthesis in mammary glands. Forty-four multiparous Chinese Holstein cows (2.8 ± 0.19 of parity, 772 ± 12.3 kg of body weight [BW], 65.8 ± 8.6 days in milk [DIM] and 35.3 ± 1.9 kg/d of milk production, mean ± SD) were blocked by parity, BW, DIM, and milk production, and they were allocated into one of four treatments in a 2 × 2 factorial block design. Additional CCP (0 mg/kg [CCP-] or 55 mg/kg dry matter [DM] of calcium pantothenate from CCP [CCP+]) and CT (0 g/kg [CT-] or 5.3 mg/kg DM of thiamine from CT [CT+]) were hand-mixed into the top one-third of total mixed ration. Both CCP and CT additives increased milk production, fat content, true protein, and lactose by promoting nutrient digestibility. The CCP or/and CT supplementation induced the elevation of C11:0, C12:0, C13:0, C14:0, C14:1, C15:0, C15:1, C16:00, C16:1, C24:00, C24:1 fatty acids, saturated fatty acid, and C4-16 fatty acid contents in milk fat; but it decreased C17-22 fatty acid content. Ruminal total VFA content was increased, but pH was decreased by both additives. The ruminal fermentation pattern was altered, and a tendency of acetate formation was implied by the increased acetate-to-propionate ratio after both additives' supplementation. The expressions of PPARγ, SREBPF1, ACACA, FASN, SCD, and FABP3 mRNAs were enhanced by CCP or CT addition, but the relative expression of LPL mRNA was upregulated by CT addition only. Additionally, blood glucose, triglyceride, insulin-like growth factor-1, and total antioxidant capacity were promoted by both additives. The combination of CCP and CT more effectively increased the ruminal total VFA concentration, the acetate to propionate ratio, and blood glucose level, and decreased ammoniacal nitrogen concentration than that achieved by CCP or CT alone. The results suggested that CCP and CT supplementation stimulated lactation performance by promoting nutrient digestion and fatty acid synthesis in the mammary glands.

7.
Anim Biotechnol ; 34(8): 3796-3807, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37409454

ABSTRACT

The experiment investigated the impacts of FA on the proliferation of bovine mammary gland epithelial cells (BMECs) and to investigate the underlying mechanisms. Supplementation of 10 µM FA elevated the mRNA expression of proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1, and protein expression of PCNA and Cyclin A1. The mRNA and protein expression of B-cell lymphoma-2 (BCL2) and the BCL2 to BCL2 associated X 4 (BAX4) ratio elevated, while that of BAX, Caspase-3 and Caspase-9 reduced by FA. Both Akt and mTOR signaling pathways were activated by FA. Moreover, the stimulation of BMECs proliferation, the alteration of proliferative genes and protein expression, the change of apoptotic genes and protein expression, and the activation of mTOR signaling pathway caused by FA were obstructed by Akt inhibitor. Suppression of mTOR with Rapamycin reversed the FA-modulated promotion of BMECs proliferation and change of proliferous genes and protein expression, with no impact on mRNA or proteins expression related to apoptosis and FA-activated Akt signaling pathway. Supplementation of rumen-protected FA in cow diets evaluated milk yields and serum insulin-like growth factor-1 and estradiol levels. The results implied that the proliferation of BMECs was stimulated by FA through the Akt-mTOR signaling pathway.


Subject(s)
Mammary Glands, Animal , Proto-Oncogene Proteins c-akt , Female , Cattle , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/pharmacology , Mammary Glands, Animal/metabolism , TOR Serine-Threonine Kinases/genetics , Diet/veterinary , Milk/metabolism , Epithelial Cells/metabolism , RNA, Messenger/genetics , Lactation/genetics , Dietary Supplements , Folic Acid/pharmacology , Folic Acid/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology
8.
Front Pharmacol ; 14: 1124633, 2023.
Article in English | MEDLINE | ID: mdl-37251330

ABSTRACT

Introduction: The energy imbalance when energy intake exceeds expenditure acts as an essential factor in the development of insulin resistance (IR). The activity of brown adipose tissue, which is involved in the dissipation of energy via heat expenditure decreases under type 2 diabetic mellitus (T2DM) state when the number of pathological aging adipocytes increases. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates several biological processes by dephosphorylating several cellular substrates; however, whether PTPN2 regulates cellular senescence in adipocytes and the underlying mechanism has not been reported. Methods: We constructed a model of type 2 diabetic mice with PTPN2 overexpression to explore the role of PTPN2 in T2DM. Results: We revealed that PTPN2 facilitated adipose tissue browning by alleviating pathological senescence, thus improving glucose tolerance and IR in T2DM. Mechanistically, we are the first to report that PTPN2 could bind with transforming growth factor-activated kinase 1 (TAK1) directly for dephosphorylation to inhibit the downstream MAPK/NF-κB pathway in adipocytes and regulate cellular senescence and the browning process subsequently. Discussion: Our study revealed a critical mechanism of adipocytes browning progression and provided a potential target for the treatment of related diseases.

9.
Se Pu ; 41(4): 323-329, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37005919

ABSTRACT

Gandou decoction (GDD) is a traditional Chinese medicine prescription that has been widely used to treat copper metabolism disorders in China with remarkable clinical effect and lower toxicity. However, evaluation of the complexation ability of copper ions is challenging, which hinders screening and discovery of coordinate active ingredients in GDD. An analytical method is needed to determinate the complexation ability of chemical constituents with copper ions. In this study, a rapid and accurate method based on ultra-high performance liquid chromatography (UHPLC) was developed to determine the complexing ability of rhubarb with copper ions. First, the optimal coordination reaction conditions between active ingredients of rhubarb and copper ions were determined. The samples were separated using an Agilent Eclipse Plus C18 column (50 mm×2.1 mm, 1.8 µm) with 5 µL injection volumes. The mobile phase was gradient eluted with methanol and water containing 0.1% (v/v) phosphoric acid at a flow rate of 0.3 mL/min. The detection wavelength was 254 nm and the column temperature was 30 ℃. Under the optimized chromatographic conditions, the rhubarb constituents were effectively separated. Next, peak areas of rhubarb were calculated before and after the coordination reaction between copper ions. The complexing ability of active ingredients in rhubarb with copper ions was evaluated by calculating the rate of changes of their chromatographic peak areas. Finally, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to identify the coordination active ingredients in rhubarb extract. Focusing on the coordination reaction conditions between active ingredients of rhubarb and copper ions revealed that the active ingredients of rhubarb and copper ions reached equilibrium by coordination reaction at pH 9 for 12 h. Methodological evaluation revealed the good stability and repeatability of the method. Under these conditions, 20 major components of rhubarb were identified by UPLC-Q-TOF-MS. According to the coordination rate of each component and copper ions, eight components with strong coordination were screened out (gallic acid 3-O-ß-D-(6'-O-galloyl)-glucopyranoside, aloe emodin-8-O-ß-D-glucoside, sennoside B, l-O-galloyl-2-O-cinnamoyl-glucoside, chysophanol-8-O-ß-D-(6″-O-acetyl)-glucoside, aloe-emodin, rhein and emodin). The respective complexation rates of the components were 62.50%, 29.94%, 70.58%, 32.77%, 34.61%, 26.07%, 28.73% and 31.78%. Compared with other reported methods, the presently developed method can be used to screen the active ingredients of traditional Chinese medicines that have complexing ability with copper ions, especially in complex mixture systems. This study describes an effective detection technology for evaluating and screening the complexing ability of other traditional Chinese medicines with metal ions.


Subject(s)
Drugs, Chinese Herbal , Emodin , Rheum , Copper , Chromatography, High Pressure Liquid , Rheum/chemistry , Drugs, Chinese Herbal/therapeutic use , Glucosides
10.
Arterioscler Thromb Vasc Biol ; 43(5): 755-773, 2023 05.
Article in English | MEDLINE | ID: mdl-36951060

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease, in which macrophages determine the progression of atherosclerotic plaques. However, no studies have investigated how METTL3 (methyltransferase like 3) in macrophages affects atherosclerotic plaque formation in vivo. Additionally, whether Braf mRNA is modified by METTL3-dependent N6-methyladenosine (m6A) methylation remains unknown. METHODS: We analyzed single-cell sequencing data of atherosclerotic plaques in mice fed with a high fat diet for different periods. Mettl3fl/fl Lyz2cre Apoe-/- mice and littermate control Mettl3fl/fl Apoe-/- mice were generated and fed high fat diet for 14 weeks. In vitro, we stimulated peritoneal macrophages with ox-LDL (oxidized low-density lipoprotein) and tested the mRNA and protein expression levels of inflammatory factors and molecules regulating ERK (extracellular signal-regulated kinase) phosphorylation. To find METTL3 targets in macrophages, we performed m6A-methylated RNA immunoprecipitation sequencing and m6A-methylated RNA immunoprecipitation-qPCR. Further, point mutation experiments were used to explore m6A-methylated adenine. Using RNA immunoprecipitation assay, we explored m6A methylation-writing protein bound to Braf mRNA. RESULTS: In vivo, METTL3 expression in macrophages increased with the progression of atherosclerosis. Myeloid cell-specific METTL3 deletion negatively regulated atherosclerosis progression and the inflammatory response. In vitro, METTL3 knockdown or knockout in macrophages attenuated ox-LDL-mediated ERK phosphorylation rather than JNK (c-Jun N-terminal kinase) and p38 phosphorylation and reduced the level of inflammatory factors by affecting BRAF protein expression. The negative regulation of inflammation response caused by METTL3 knockout was rescued by overexpression of BRAF. In mechanism, METTL3 targeted adenine (39725126 in chromosome 6) on the Braf mRNA. Then, YTHDF1 could bind to m6A-methylated Braf mRNA and promoted its translation. CONCLUSIONS: Myeloid cell-specific Mettl3 deficiency suppressed hyperlipidemia-induced atherosclerotic plaque formation and attenuated atherosclerotic inflammation. We identified Braf mRNA as a novel target of METTL3 in the activation of the ox-LDL-induced ERK pathway and inflammatory response in macrophages. METTL3 may represent a potential target for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/metabolism , Proto-Oncogene Proteins B-raf/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Macrophages/metabolism , Inflammation/genetics , Inflammation/prevention & control , Inflammation/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Apolipoproteins E/metabolism
11.
Cell Death Differ ; 30(4): 966-978, 2023 04.
Article in English | MEDLINE | ID: mdl-36681779

ABSTRACT

Innate immunity is the first line to defend against pathogenic microorganisms, and Toll-like receptor (TLR)-mediated inflammatory responses are an essential component of innate immunity. However, the regulatory mechanisms of TLRs in innate immunity remain unperfected. We found that the expression of E3 ligase Ring finger protein 99 (RNF99) decreased significantly in peripheral blood monocytes from patients infected with Gram negative bacteria (G-) and macrophages stimulated by TLRs ligands, indicating the role of RNF99. We also demonstrated for the first time, the protective role of RNF99 against LPS-induced septic shock and dextran sodium sulfate (DSS)-induced colitis using RNF99 knockout mice (RNF99-/-) and bone marrow-transplanted mice. In vitro experiments revealed that RNF99 deficiency significantly promoted TLR-mediated inflammatory cytokine expression and activated the NF-κB and MAPK pathways in macrophages. Mechanistically, in both macrophages and HEK293 cell line with TLR4 stably transfection, RNF99 interacted with and degraded TAK1-binding protein (TAB) 2, a regulatory protein of the kinase TAK1, via the lysine (K)48-linked ubiquitin-proteasomal pathway on lysine 611 of TAB2, which further regulated the TLR-mediated inflammatory response. Overall, these findings indicated the physiological significance of RNF99 in macrophages in regulating TLR-mediated inflammatory reactions. It provided new insight into TLRs signal transduction, and offered a novel approach for preventing bacterial infections, endotoxin shock, and other inflammatory ills.


Subject(s)
Lysine , Ubiquitin-Protein Ligases , Humans , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Lysine/metabolism , HEK293 Cells , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism , Ubiquitination , NF-kappa B/metabolism , Immunity, Innate , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
12.
Food Funct ; 14(1): 277-291, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36484706

ABSTRACT

Nervonic acid is one of the most promising bioactive fatty acids, which is believed to be beneficial for the recovery of human cognitive disorders. However, the detailed neuroprotective effects and mode of action of nervonic acid have not yet been fully elucidated. In this study, we used an MPTP-stimulated mouse Parkinson's disease (PD) model as a target to investigate the neuroprotective effects by behavioral tests and integrative analysis of trancriptomes and metabolomes of PD mouse brain with nervonic acid injections. The KEGG pathway enrichment analysis of transcriptomes showed that the genes involved in neuroinflammation were significantly increased after MPTP induction and have been greatly inhibited by nervonic acid injection, while nervonic acid also greatly improved nerve growth and synaptic plasticity pathways which were significantly downregulated by MPTP. At the same time, the upregulation of oleic acid and arachidonic acid metabolism pathways and the downregulation of amino acid metabolism pathways in metabolomes were particularly highlighted in the nervonic acid protection groups compared with the PD model. Meanwhile, it was found that arachidonic acid, oleic acid and taurine play an important regulatory role in the neuroprotective mechanism of nervonic acid through fatty acid metabolism by integrative analysis. Therefore, our study laid a solid foundation for further studies on the specific role of nervonic acid in the inhibition of PD at the level of metabolic regulation.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Humans , Animals , Mice , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Transcriptome , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Arachidonic Acids , Oleic Acids , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Disease Models, Animal
13.
Langmuir ; 38(40): 12248-12262, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36170011

ABSTRACT

The deposition and spreading of pesticide droplets on the surface of plants is a severe challenge to precise pesticide application, which directly affects the pesticide utilization rate and efficacy. Cotton harvest aids are widely used in machine-picked cotton but the effect of formulation and concentration on the droplet behavior and defoliation effect of cotton defoliants is not clear. To clarify the influence of formulation and concentration on the droplet behavior of cotton defoliants, four formulations (suspension concentrate (SC), water dispersible granule (WG), oil dispersion (OD), and wettable powder (WP)) of cotton defoliants were used to prepare different concentrations of harvest aid solutions, according to the spraying volume. The physicochemical properties, droplet impact, and spreading and deposition behavior were studied. The results indicated that the four kinds of harvest aids have good physicochemical properties and can be wet and spread on cotton leaves. The surface tension of the high-concentration harvest aid solution (the spraying volume was less than 1.2 L/667 m2) was increased, which increased the contact angle and reduced the adhesion tension, adhesion work, and the spreading area. Once the harvest aid solution systems impacted the cotton leaves, it could spread to the maximum in a short time (10 ms). The field experiment showed that the droplet spectrum of harvest aids changed slightly, the coefficient of variation (CV) did not exceed 50%, and the defoliation rate was better when the spraying volume was 1.5 L/667 m2. The correlation and principal component analysis showed that the spraying volume (concentration) and coverage were negatively correlated with the defoliation rate, while the viscosity, diffusion factor, and spreading rate were positively correlated with the defoliation rate. Overall, the use of appropriate spraying volume application in cotton fields can improve the performance of spray, increase the effective deposition and wetting spread of defoliants on cotton leaves, further reduce the dosage of defoliants, and improve pesticide utilization. These results can provide a theoretical basis for the scientific preparation and spraying of cotton harvest aid solutions.


Subject(s)
Pesticides , Pesticides/analysis , Pesticides/chemistry , Plant Leaves/chemistry , Powders , Water , Wettability
14.
Front Plant Sci ; 13: 917462, 2022.
Article in English | MEDLINE | ID: mdl-36160975

ABSTRACT

Defoliant spraying is an important aspect of the mechanized processing of pepper harvesting. Complete and uniform spraying of defoliant could improve the quality of defoliation and reduce the impurity content in processing pepper. In this study, we assessed the effect of aerial spraying of adjuvants on physicochemical properties of defoliant solution and droplet deposition when using an unmanned aerial vehicle (UAV) for defoliation spraying. The results showed that Puliwang was a better aerial spray adjuvant suitable for spraying defoliants for processing pepper using UAVs, with a higher defoliation rate and better droplet deposition. Although the YS-20 adjuvant had a higher droplet deposition amount (0.72 µg/cm2) in the middle layer, its performance was poor in droplet size, density, and coverage. The size and density of the droplets added with the Manniu were basically the same as the Puliwang, even the distribution uniformity was better (the CV of the upper canopy layer was only 33.6%), but the coverage rate was poor. In the treatment with AS-901N, there was no marked increase in droplet size, so evaporation and drift were not improved, eventually resulting in a lower defoliation rate. Puliwang had the highest comprehensive score, followed by AS-910N, YS-20, and Manniu.

15.
Sensors (Basel) ; 22(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35459073

ABSTRACT

Coal burst prediction is an important research hotspot in coal mine production safety. This paper presents FDNet, which is a knowledge and data fusion-driven deep neural network for coal burst prediction. The main idea of FDNet is to extract explicit features based on the existing mine seismic physical model and utilize deep learning to automatically extract the implicit features of mine microseismic data. The key innovations of FDNet include an expert knowledge indicator selection method based on a subset search strategy, a mine microseismic data extraction method based on a deep convolutional neural network, and a feature deep fusion method of mine microseismic data based on an attention mechanism. We conducted a set of engineering experiments in Gaojiapu Coal Mine to evaluate the performance of FDNet. The results show that compared with the state-of-the-art data-driven machines and knowledge-driven methods, the prediction accuracy of FDNet is improved by 5% and 16%, respectively.


Subject(s)
Coal , Neural Networks, Computer
16.
MedComm (2020) ; 3(1): e116, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35281794

ABSTRACT

Whole genome amplification (WGA) is a technology for non-selective amplification of the whole genome sequence, first appearing in 1992. Its primary purpose is to amplify and reflect the whole genome of trace tissues and single cells without sequence bias and to provide sufficient DNA template for subsequent multigene and multilocus analysis, along with comprehensive genome research. WGA provides a method to obtain a large amount of genetic information from a small amount of DNA and provides a valuable tool for preserving limited samples in molecular biology. WGA technology is especially suitable for forensic identification and genetic disease research, along with new technologies such as next-generation sequencing (NGS). In addition, WGA is also widely used in single-cell sequencing. Due to the small amount of DNA in a single cell, it is often unable to meet the amount of samples needed for sequencing, so WGA is generally used to achieve the amplification of trace samples. This paper reviews WGA methods based on different principles, summarizes both amplification principle and amplification quality, and discusses the application prospects and challenges of WGA technology in molecular diagnosis and medicine.

17.
Ultrason Sonochem ; 82: 105894, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34974389

ABSTRACT

The electrochemical mechanism of Fe-Ni electrodeposition under ultrasonic was investigated by electrochemistry methods. Linear scanning voltammetry and cyclic voltammetry were used to show that the deposition process changed from the diffusion control under static conditions to an electrochemical control under ultrasonic conditions. Chronoamperometry curves showed that the Fe-Ni deposit occurred by a mechanism that instantaneous nucleation is followed by three-dimensional growth under charge transfer control. Chronopotentiogram indicated that because of the intensity of the ultrasound stripping effect, high ultrasonic power is unsuitable for electroforming Fe-Ni alloy, and a high current density is also not appropriate. Thus, the optimum parameters for Fe-Ni electrodeposition under ultrasonic conditions are ultrasonic power between 80 and 100 W (power density 0.28-0.35 W/cm2), and a current density lower than 10 mA/cm2 with temperature 323 K and pH 3. Experiments were performed to verify that the Fe-Ni masks prepared by ultrasonic-assisted electroforming had a good surface quality. The increase in ultrasonic power can obtain a larger grain size, thus got a low thermal expansion coefficient and a high hardness. Therefore, ultrasonic-assisted electrodeposition technology provides an effective and practically feasible manufacturing method for OLED Fe-Ni mask preparation.

18.
Fish Shellfish Immunol ; 116: 150-160, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34265416

ABSTRACT

As a tyrosine phosphatase, Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) serves as an inhibitor in PI3K-Akt pathway. In mammals, SHP2 can phosphorylate GSK3ß at Y216 site to control the expression of IFN. So far, the multiple functions of SHP2 have been reported in mammals. However, little is known about fish SHP2. In this study, we cloned and identified a grass carp (Ctenopharyngodon idellus) SHP2 gene (CiSHP2, MT373151). SHP2 is conserved among different vertebrates by amino acid sequences alignment and the phylogenetic tree analysis. CiSHP2 shared the closest homology with Danio rerio SHP2. Simultaneously, SHP2 was also tested in grass carp tissues and CIK (C. idellus kidney) cells. We found that it responded to poly I:C stimulation. CiSHP2 was located in the cytoplasm just as the same as those of mammals. Interestingly, it inhibited the phosphorylation level of GSK3ß in a non-contact manner. Meanwhile CiGSK3ß interacted with and directly phosphorylated CiTBK1. In addition, we found that CiSHP2 also reduced the phosphorylation level of CiTBK1 by CiGSK3ß, and then it depressed the expression of IFN I via GSK3ß-TBK1 axis. These results suggested that CiSHP2 was involved in CiGSK3ß and CiTBK1 activity but not regulated their transcriptional level. At the same time, we also found that CiSHP2 also influenced the activity of CiIRF3. Therefore, fish SHP2 inhibited IFN I expression through blocking GSK3ß-TBK1 signal axis.


Subject(s)
Carps/immunology , Fish Proteins/immunology , Glycogen Synthase Kinase 3 beta/immunology , Interferon Type I/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology , Amino Acid Sequence , Animals , Carps/genetics , Cell Line , Fish Proteins/genetics , Phosphorylation , Phylogeny , Poly I-C/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
19.
Front Psychol ; 12: 658180, 2021.
Article in English | MEDLINE | ID: mdl-34149545

ABSTRACT

Job resources can buffer the deleterious effect of adverse work environments. Extant studies on the interaction pattern between job resources and adverse environments were confined to the diathesis stress model. This traditional perspective has received the challenge from the differential susceptibility model and the vantage sensitivity model. Additionally, stress reactivity may be one of the important job resources at the personal biological level, but its moderating role was short of empirical research. This study aimed to examine how stress reactivity interacts with work environments in predicting job burnouts among 341 Chinese hospital female nurses. This study selected job control and job support representative of supportive environments and psychological demands representative of an adverse environment and the cortisol content in 1-cm hair segment as a biomarker to assess individual's stress reactivity in 1 month. The nurses self-reported their work environments and job burnouts and provided 1-cm hair segments closest to the scalp. Hair cortisol content was measured with high-performance liquid chromatography-tandem mass spectrometry. The interaction pattern was examined with multiple linear regressions and the analysis of region of significance (RoS). The regression revealed that the interaction of hair cortisol content with job control could positively predict professional efficiency among nurses, with psychological demands could negatively predict emotional exhaustion, and with coworker support could negatively predict professional efficiency. The RoS analysis revealed that nurses with high cortisol levels had not only significantly higher professional efficiency than those with low cortisol levels in high job control but also significantly lower professional efficiency in low job control. Nurses with high cortisol levels had significantly higher emotional exhaustion than those with low cortisol levels in low psychological demands. Nurses with low cortisol levels had not only significantly higher professional efficiency than those with high cortisol levels in high coworker support but also significantly lower professional efficiency in low coworker support. The interaction patterns of stress reactivity with both job control and coworker support were consistent with the differential susceptibility model, but the interaction between stress reactivity and psychological demands supported the vantage sensitivity model.

20.
FASEB J ; 35(5): e21504, 2021 05.
Article in English | MEDLINE | ID: mdl-33913563

ABSTRACT

Cell death-inducing DFFA-like effector C (CIDEC) is responsible for metabolic disturbance and insulin resistance, which are considered to be important triggers in the development of diabetic cardiomyopathy (DCM). To investigate whether CIDEC plays a critical role in DCM, DCM rat model was induced by a high-fat diet and a single injection of low-dose streptozotocin (27.5 mg/kg). DCM rats showed severe metabolic disturbance, insulin resistance, myocardial hypertrophy, interstitial fibrosis, ectopic lipid deposition, inflammation and cardiac dysfunction, accompanied by CIDEC elevation. With CIDEC gene silencing, the above pathophysiological characteristics were significantly ameliorated accompanied by significant improvements in cardiac function in DCM rats. Enhanced AMP-activated protein kinase (AMPK) α activation was involved in the underlying pathophysiological molecular mechanisms. To further explore the underlying mechanisms that CIDEC facilitated collagen syntheses in vitro, insulin-resistant cardiac fibroblast (CF) model was induced by high glucose (15.5 mmol/L) and high insulin (104  µU/mL). We observed that insulin-resistant stimulation dramatically raised CIDEC expression and promoted CIDEC nuclear translocation in CFs. Meanwhile, AMPKα2 was observed to distribute almost completely inside CF nucleus. The results further proved that CIDEC biochemically interacted and co-localized with AMPKα2 rather than AMPKα1 in CF nucleus, which provided a novel mechanism of CIDEC in promoting collagen syntheses. This study suggested that CIDEC gene silencing alleviates DCM via AMPKα signaling both in vivo and in vitro, implicating CIDEC may be a promising target for treatment of human DCM.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/prevention & control , Gene Expression Regulation , Gene Silencing , Proteins/antagonists & inhibitors , Animals , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Insulin Resistance , Male , Phosphorylation , Proteins/genetics , Proteins/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...