Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 660: 124352, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901540

ABSTRACT

Atherosclerosis is a chronic multifactorial cardiovascular disease. To combat atherosclerosis effectively, it is necessary to develop precision and targeted therapy in the early stages of plaque formation. In this study, a simvastatin (SV)-containing prodrug micelle SPCPV was developed by incorporating a peroxalate ester bond (PO). SPCPV could specifically target VCAM-1 overexpressed at atherosclerotic lesions. SPCPV contains a carrier (CP) composed of cyclodextrin (CD) and polyethylene glycol (PEG). At the lesions, CP and SV exerted multifaceted anti-atherosclerotic effects. In vitro studies demonstrated that intracellular reactive oxygen species (ROS) could induce the release of SV from SPCPV. The uptake of SPCPV was higher in inflammatory cells than in normal cells. Furthermore, in vitro experiments showed that SPCPV effectively reduced ROS levels, possessed anti-inflammatory properties, inhibited foam cell formation, and promoted cholesterol efflux. In vivo studies using atherosclerotic rats showed that SPCPV reduced the thickness of the vascular wall and low-density lipoprotein (LDL). This study developed a drug delivery strategy that could target atherosclerotic plaques and treat atherosclerosis by integrating the carrier with SV. The findings demonstrated that SPCPV possessed high stability and safety and had great therapeutic potential for treating early-stage atherosclerosis.

2.
Nanoscale ; 16(4): 1983-1998, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38189459

ABSTRACT

Acute lung injury (ALI) is an inflammatory disease caused by multiple factors such as infection, trauma, and chemicals. Without effective intervention during the early stages, it usually quickly progresses to acute respiratory distress syndrome (ARDS). Since ordinary pharmaceutical preparations cannot precisely target the lungs, their clinical application is limited. In response, we constructed a γ3 peptide-decorated and ROS-responsive nanoparticle system encapsulating therapeutic dexamethasone (Dex/PSB-γ3 NPs). In vitro, Dex/PSB-γ3 NPs had rapid H2O2 responsiveness, low cytotoxicity, and strong intracellular ROS removal capacity. In a mouse model of ALI, Dex/PSB-γ3 NPs accumulated at the injured lung rapidly, alleviating pulmonary edema and cytokine levels significantly. The modification of NPs by γ3 peptide achieved highly specific positioning of NPs in the inflammatory area. The ROS-responsive release mechanism ensured the rapid release of therapeutic dexamethasone at the inflammatory site. This combined approach improves treatment accuracy, and drug bioavailability, and effectively inhibits inflammation progression. Our study could effectively reduce the risk of ALI progressing to ARDS and hold potential for the early treatment of ALI.


Subject(s)
Acute Lung Injury , Nanoparticles , Respiratory Distress Syndrome , Mice , Animals , Reactive Oxygen Species/pharmacology , Intercellular Adhesion Molecule-1 , Hydrogen Peroxide/therapeutic use , Acute Lung Injury/drug therapy , Lung , Respiratory Distress Syndrome/drug therapy , Nanoparticles/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
3.
Cancers (Basel) ; 14(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36497459

ABSTRACT

Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.

4.
Cell Mol Gastroenterol Hepatol ; 14(5): 1123-1145, 2022.
Article in English | MEDLINE | ID: mdl-35953024

ABSTRACT

BACKGROUND & AIMS: Glia maturation factor-ß (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS: Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS: GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1ß. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS: GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.


Subject(s)
Glia Maturation Factor , Liver Regeneration , Animals , Mice , Actins/metabolism , Carbon Tetrachloride , Cyclin D1/metabolism , Destrin/metabolism , Glia Maturation Factor/metabolism , Interleukin-6/metabolism , Janus Kinases/metabolism , Liver Diseases , Mice, Knockout , STAT3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
BMC Genomics ; 20(1): 375, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088347

ABSTRACT

BACKGROUND: Plant non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are abundant in higher plants. They have been reported to play an important role in various plant physiological processes, such as lipid transfer, signal transduction, and pathogen defense. To date, a comprehensive analysis of the potato nsLTP gene family is still lacking after the completion of potato (Solanum tuberosum L.) genome sequencing. A genome-wide characterization, classification and expression analysis of the StnsLTP gene family was performed in this study. RESULTS: In this study, a total of 83 nsLTP genes were identified and categorized into eight types based on Boutrot's method. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, and cis-elements in the promoter sequences, were analyzed. The chromosome distribution and the collinearity analyses suggested that the expansion of the StnsLTP gene family was greatly enhanced by the tandem duplications. Ka/Ks analysis showed that 47 pairs of duplicated genes tended to undergo purifying selection during evolution. Moreover, the expression of StnsLTP genes in various tissues was analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the StnsLTP genes were mainly expressed in younger tissues. These results indicated that StnsLTPs may played significant and functionally varied roles in the development of different tissues. CONCLUSION: In this study, we comprehensively analyzed nsLTPs in potato, providing valuable information to better understand the functions of StnsLTPs in different tissues and pathways, especially in response to abiotic stress.


Subject(s)
Carrier Proteins/genetics , Sequence Analysis, RNA/methods , Solanum tuberosum/metabolism , Whole Genome Sequencing/methods , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation, Plant , Lipid Metabolism , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Selection, Genetic , Solanum tuberosum/chemistry , Solanum tuberosum/genetics , Stress, Physiological
6.
Int J Mol Sci ; 19(1)2018 01 04.
Article in English | MEDLINE | ID: mdl-29300308

ABSTRACT

The authors would like to insert some websites and citations in the following sentence, "First, the complete proteomes of these species were downloaded from the Phytozome website (Version 11; Available online: www.phytozome.org)" in the "Materials and Methods" section on page 13, paragraph 3.1 of their paper published in the International Journal of Molecular Sciences [1].[...].

7.
Int J Mol Sci ; 18(10)2017 Oct 08.
Article in English | MEDLINE | ID: mdl-28991190

ABSTRACT

The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.


Subject(s)
Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Bryopsida/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Glycine max/metabolism
8.
Front Plant Sci ; 8: 66, 2017.
Article in English | MEDLINE | ID: mdl-28184232

ABSTRACT

Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for "classical" and "chimeric" family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many "ancient" AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...