Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Nat Methods ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965443

ABSTRACT

Recent developments of sequencing-based spatial transcriptomics (sST) have catalyzed important advancements by facilitating transcriptome-scale spatial gene expression measurement. Despite this progress, efforts to comprehensively benchmark different platforms are currently lacking. The extant variability across technologies and datasets poses challenges in formulating standardized evaluation metrics. In this study, we established a collection of reference tissues and regions characterized by well-defined histological architectures, and used them to generate data to compare 11 sST methods. We highlighted molecular diffusion as a variable parameter across different methods and tissues, significantly affecting the effective resolutions. Furthermore, we observed that spatial transcriptomic data demonstrate unique attributes beyond merely adding a spatial axis to single-cell data, including an enhanced ability to capture patterned rare cell states along with specific markers, albeit being influenced by multiple factors including sequencing depth and resolution. Our study assists biologists in sST platform selection, and helps foster a consensus on evaluation standards and establish a framework for future benchmarking efforts that can be used as a gold standard for the development and benchmarking of computational tools for spatial transcriptomic analysis.

2.
Adv Sci (Weinh) ; : e2400229, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973266

ABSTRACT

Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional ß-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of ß-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.

3.
Int J Biol Macromol ; : 133411, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945722

ABSTRACT

Preparing bio-based air filtration membrane through green electrospinning strategy is a vital approach to alleviating environmental and energy crises. However, the development of related biomaterials and method for regulating membrane structure are still lacking. In this study, ethyl cellulose (EC) bimodal nanofibrous membrane was prepared by electrospinning using ethanol and water as solvents to achieve high-performance air filtration. A new strategy for bimodal fiber molding based on molecular weight modulation was proposed. The EC polymer chains with medium molecular weights were subject to the highest degree of inhomogeneity of solvent intrusion, and there were significant differences in viscous forces "microscopically", leading to the formation of bimodal structure by inhomogeneous stretching of the jet. The well-defined bimodal structure endowed EC membrane with excellent air filtration performance. The filtration efficiency for PM0.3, pressure drop, quality factor were 99.11 %, 42.2 Pa, and 0.112 Pa-1, respectively. Compared to the commonly used zein, EC cost just 12.77 %, and its solution had a 50 % longer shelf life, making it a more desirable biomaterial. This work will facilitate the application of more biomaterials in air filtration, promote the green fabrication of high-performance air filtration membranes, and realize sustainable development.

4.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38766185

ABSTRACT

Pseudouridine (psi) is one of the most abundant human mRNA modifications generated from the isomerization of uridine via psi synthases, including TRUB1 and PUS7. Nanopore direct RNA sequencing combined with our recent tool, Mod-p ID, enables psi mapping, transcriptome-wide, without chemical derivatization of the input RNA and/or conversion to cDNA. This method is sensitive for detecting changes in positional psi occupancies across cell types, which can inform our understanding of the impact on gene expression. We sequenced, mapped, and compared the positional psi occupancy across six immortalized human cell lines derived from diverse tissue types. We found that lung-derived cells have the highest proportion of psi, while liver-derived cells have the lowest. Further, among a list of highly conserved sites across cell types, most are TRUB1 substrates and fall within the coding sequence. We find that these conserved psi positions correspond to higher levels of protein expression than expected, suggesting translation regulation. Interestingly, we identify cell type-specific sites of psi modification in ubiquitously expressed genes. We validate these sites by ruling out single-nucleotide variants, analyzing current traces, and performing enzymatic knockdowns of psi synthases. Finally, we characterize sites with multiple psi modifications on the same transcript (hypermodification type II) and found that these can be conserved or cell type specific. Among these, we discovered examples of multiple psi modifications within the same k-mer for the first time and analyzed the effect on current distribution. Our data support the hypothesis that motif sequence and the presence of psi synthase are insufficient to drive modifications, that psi modifications contribute to regulating translation and that cell type-specific trans-acting factors play a major role in driving pseudouridylation.

5.
BMC Health Serv Res ; 24(1): 378, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539139

ABSTRACT

INTRODUCTION: Community General Practitioners (CGPs) are crucial to primary healthcare worldwide. Their job satisfaction significantly impacts the quality and accessibility of healthcare. However, a comprehensive global perspective on this issue remains absent, necessitating this systematic review and meta-analysis. METHODS: This systematic review and meta-analysis sourced literature from PubMed, Web of Science, CNKI, and Wanfang, up to June 14, 2023. Of the 2,742 identified studies, 100 articles were selected for meta-analysis to assess satisfaction levels, and 97 studies were chosen for comparative analysis of influential factors. We employed both meta-analytic and comparative analytic methodologies, focusing on varying geographical, economic, and temporal contexts. RESULTS: The pooled rate and corresponding 95% confidence interval (CI) for job satisfaction among CGPs was 70.82% (95%CI: 66.62-75.02%) globally. Studies utilizing 5-point score scale obtained a random effect size of 3.52 (95%CI: 3.43-3.61). Diverse factors influenced satisfaction, with remuneration and working conditions being predominant. A noticeable decline in job satisfaction has been observed since the coronavirus disease 2019 outbreak, with satisfaction rates dropping from an average of 72.39% before 2009 to 63.09% in those published after 2020. CONCLUSIONS: The downward trend in CGPs' job satisfaction is concerning and warrants urgent attention from policymakers, especially in regions with an acute shortage of CGPs. The findings from this comprehensive review and meta-analysis provide essential insights for informed healthcare policy-making. It highlights the urgency of implementing strategies to enhance CGP satisfaction, thereby improving the effectiveness of primary healthcare systems globally.

6.
Angiology ; : 33197231219836, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38179951

ABSTRACT

Several epidemiological studies suggested that frequency of tooth brushing may be associated with cardiovascular disease (CVD) risk, but the results remain inconclusive. Therefore, the aim of this study was to synthesize frequency of tooth brushing and CVD risk using meta-analysis. Science Direct, PubMed, CINAHL, and OVID were searched through October 15, 2022. The random-effects model was used to quantitatively assess the combined risk estimation. In addition, we performed the sensitivity analysis to evaluate the robustness of the study results by excluding the included studies one by one. A total of 9 cohort studies containing 10 reports with 803,019 individuals were included in the meta-analysis. Pooled results showed that compared with the lowest brushing frequency, the highest brushing frequency (relative risk = 0.85, 95% confidence interval: 0.80-0.90) significantly reduced the risk of cardiovascular disease. There was moderate heterogeneity among included studies (P = .002, I2 = 65.4%). The exclusion of any one study did not materially change the combined risk estimates. Our meta-analysis supported the hypothesis that higher frequency of tooth brushing can reduce the risk of CVD, which may have important implications for conducting research on the prevention strategies of CVD.

7.
Int J Biol Macromol ; 254(Pt 2): 127862, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939775

ABSTRACT

Functionalization of bio-based nanofibers is the development tendency of high-performance air filter. However, the conventional structural optimization strategy based on high solution conductivity greatly hinders the development of fully bio-based air filter, and not conducive to sustainable development. This work fabricated fully bio-based nanofibrous membrane with formaldehyde-adsorbable and antibacterial capabilities by electrospinning low-conductivity solution for high-performance air filtration and applied to lightweight mask. The "water-like" ethyl cellulose (EC) was selected as the base polymer to "nourish" functional materials of gelatin (GE), ß-cyclodextrin (ßCD), and curcumin (Cur), thus forming a solution system with high binding energy differences and electrospinning into ultrafine bimodal nanofibers. The filtration efficiency for 0.3 µm NaCl particles, pressure drop, and quality factor were 99.25 %, 53 Pa, and 0.092 Pa-1, respectively; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.9 % and 99.4 %, respectively; the formaldehyde adsorption capacity was 442 µg/g. This is the first report on antibacterial and formaldehyde-adsorbable high-performance air filter entirely made from bio-based materials. This simple strategy will greatly broaden the selection of materials for preparing high-performance multifunctional air filter, and promote the development of bio-based air filter.


Subject(s)
Curcumin , Nanofibers , Nanofibers/chemistry , Curcumin/pharmacology , Gelatin , Filtration , Anti-Bacterial Agents/pharmacology
8.
New Phytol ; 241(5): 2258-2274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105545

ABSTRACT

Alkaloids are a large group of plant secondary metabolites with various structures and activities. It is important to understand their functions in the interplay between plants and the beneficial and pathogenic microbiota. Amaryllidaceae alkaloids (AAs) are unique secondary metabolites in Amaryllidaceae plants. Here, we studied the interplay between AAs and the bacteriome in Lycoris radiata, a traditional Chinese medicinal plant containing high amounts of AAs. The relationship between AAs and bacterial composition in different tissues of L. radiata was studied. In vitro experiments revealed that AAs have varying levels of antimicrobial activity against endophytic bacteria and pathogenic fungi, indicating the importance of AA synthesis in maintaining a balance between plants and beneficial/pathogenic microbiota. Using bacterial synthetic communities with different compositions, we observed a positive feedback loop between bacteria insensitive to AAs and their ability to increase accumulation of AAs in L. radiata, especially in leaves. This may allow insensitive bacteria to outcompete sensitive ones for plant resources. Moreover, the accumulation of AAs enhanced by insensitive bacteria could benefit plants when challenged with fungal pathogens. This study highlights the functions of alkaloids in plant-microbe interactions, opening new avenues for designing plant microbiomes that could contribute to sustainable agriculture.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Lycoris , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/metabolism , Lycoris/chemistry , Lycoris/metabolism , Alkaloids/metabolism , Plant Extracts/chemistry
9.
ACS Appl Mater Interfaces ; 15(37): 44259-44267, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672751

ABSTRACT

Organic flame-retardant-loaded battery separator offers a new opportunity for battery safety. However, its poor thermal stability still poses serious safety issues. Inspired by Tai Chi, an "internal-cultivating and external-practicing" core-shell nanofibrous membrane was prepared by coaxial electrospinning, wherein the shell layer was a mixture of polyvinylidene fluoride, silicon dioxide (SiO2), and graphene oxide (GO) and the core layer contained triphenyl phosphate (TPP). SiO2 and GO enhanced the thermal stability and electrochemical performance. The encapsulated TPP prevented heat transfer and the degradation of electrochemical performance caused by its direct dissolution. This separator exhibited outstanding thermal stability and flame retardancy: it did not burn and remained relatively intact (91.2%) in an open flame for 15 s. The battery assembled with a composite separator showed excellent performance: the initial capacity reached 164 mA h/g and maintained 95% after 100 charge-discharge cycles. This novel strategy endows high-performance lithium batteries with relatively higher safety.

10.
Sensors (Basel) ; 23(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687879

ABSTRACT

A fuzzy PI controller was utilized to realize the modal matching between a driving and detecting model. A simulation model was built to study electrostatic decoupling controlling technology. The simulation results show that the modal matching can be gained by the fuzzy PI controller. The frequency difference between the driving mode and the detection mode is less than 1 Hz, and the offset of the input DC is smaller than 0.6 V. The optimal proportionality factor and integral coefficient are 1.5 and 20, respectively. The fuzzy PI controlling technology provides a good way for the parameter optimization to gain modal matching of micro gyro, via which the detecting accuracy and stability can be improved greatly.

11.
Nature ; 623(7985): 122-131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722602

ABSTRACT

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2-Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.


Subject(s)
Calcium Signaling , Calcium , Cholinergic Neurons , Drosophila melanogaster , Enterocytes , Intestines , Animals , Humans , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Calcium/metabolism , Cholinergic Neurons/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Enterocytes/metabolism , Homeostasis , Inflammation/enzymology , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Intestines/cytology , Intestines/metabolism , Receptors, Nicotinic/metabolism , Disease Models, Animal
12.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645990

ABSTRACT

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the etiology of chronic disorders such as inflammatory bowel diseases and cancer. We used the Drosophila midgut to investigate this question and discovered that during regeneration a subpopulation of cholinergic enteric neurons triggers Ca2+ currents among enterocytes to promote return of the epithelium to homeostasis. Specifically, we found that down-regulation of the cholinergic enzyme Acetylcholinesterase in the epithelium enables acetylcholine from defined enteric neurons, referred as ARCENs, to activate nicotinic receptors in enterocytes found near ARCEN-innervations. This activation triggers high Ca2+ influx that spreads in the epithelium through Inx2/Inx7 gap junctions promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki activation and increase of inflammatory cytokines together with hyperplasia, reminiscent of inflammatory bowel diseases. Altogether, we found that during gut regeneration the conserved cholinergic pathway facilitates epithelial Ca2+ waves that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric-dependent intestinal regeneration which advance the current understanding of how a tissue returns to its homeostatic state after injury and could ultimately help existing therapeutics.

13.
Brain Behav ; 13(7): e3078, 2023 07.
Article in English | MEDLINE | ID: mdl-37269140

ABSTRACT

BACKGROUND: Previous studies have suggested that ambient temperature is associated with the morbidity and mortality of stroke although results among these investigations remained unclear. Therefore, the purpose of present meta-analysis was to summarize the evidence of the relationship between ambient temperature and stroke morbidity and mortality. METHODS: A systematic search of the PubMed, Embase, and Web of Science databases was from inception to April 13, 2022. The pooled estimates for heat ambient temperature and cold ambient temperature, which were defined as comparison between extreme hot or cold conditions and the reference or threshold temperature, were calculated utilizing a random-effects model. A total of 20 studies were included in the meta-analysis. RESULTS: The pooled estimated show that the heat ambient temperature was significant associated with 10% (relative risk [RR], 1.10; 95% confidence interval [95%CI]: 1.02-1.18) and 9% (RR, 1.09; 95%CI: 1.02-1.17) increase in the risk of stroke morbidity and mortality, respectively. In addition, the pooled estimated show that the cold ambient temperature was significant associated with 33% (RR, 1.33; 95%CI: 1.17-1.51) and 18% (RR, 1.18; 95%CI: 1.06-1.31) increase in the risk of stroke morbidity and mortality, respectively. CONCLUSION: Integrated epidemiological evidence supports the hypothesis that both heat and cold ambient temperature have positive association with the risk of stroke morbidity and mortality. Targeted measures should be promoted in public health to reduce this risk.


Subject(s)
Cold Temperature , Stroke , Humans , Temperature , Hot Temperature , Stroke/epidemiology , Morbidity
14.
ACS Sens ; 8(7): 2563-2571, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37368999

ABSTRACT

Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titers is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and polymerase chain reaction (PCR)-based (sensitive but not rapid). Current viral titration methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid capture fluorescence in situ hybridization (FISH) or rapture FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are "infectious," thus serving as a more consistent proxy of infectious titers. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer and then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH); thus, it is selective for infectious particles (i.e., positive for coat proteins and positive for genomes).


Subject(s)
Virus Diseases , Viruses , Humans , In Situ Hybridization, Fluorescence/methods , Viruses/genetics , Polymerase Chain Reaction , Virion
15.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292804

ABSTRACT

A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk, two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK-STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia.

16.
J Cosmet Dermatol ; 22(11): 3135-3142, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37190848

ABSTRACT

BACKGROUND: The MAPK/Erk signaling pathway is a classic pathway in cell proliferation. Our former study showed that keloid tissue revealed a higher proliferation level than physiological scars and normal skin. As a natural metabolite of estradiol, 2-methoxyestradiol (2ME2) showed an inhibition proliferation effect on tumor cells. AIM: In this study, the treatment effect of 2ME2 and its potential mechanisms are explored. METHODS: Six keloid patients and six non-keloid patients were randomly selected from the Department of Plastic Surgery at our hospital during June 2021 to December 2021. Six groups were established: normal skin fibroblasts (N); keloid fibroblasts (K); keloid fibroblasts treated with 2ME2 (K + 2ME2); keloid fibroblasts treated with dimethyl sulfoxide (DMSO) (K + DMSO); keloid fibroblasts treated with doramapimod (K + IN); keloid fibroblasts treated with doramapimod (p38 inhibitor) and 2ME2 (K + IN+2ME2). The fibroblast activity and key factor expression of the MAPK/Erk signaling pathway were measured. RESULTS: In the results, 2ME2 significantly inhibited keloid fibroblast activity and key factor expression (except STAT1). CONCLUSION: The proliferation levels were reduced by both the p38 inhibitor and 2ME2, indicating 2ME2 may achieve an antiproliferation effect by targeting p38 in keloid fibroblasts.

17.
Molecules ; 28(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241919

ABSTRACT

Graphene oxide (GO) has shown remarkable performance in the multiple-equilibrium-route adsorption (MER) process, which is characterized by further activation of GO through an in-situ reduction process based on single-equilibrium-route adsorption (SER), generating new adsorption sites and achieving an adsorption capacity increase. However, the effect of GO on MER adsorption in lateral size and thickness is still unclear. Here, GO sheets were sonicated for different lengths of time, and the adsorption of MER and SER was investigated at three temperatures to remove the typical cationic dye, acridine orange (AO). After sonication, we found that freshly prepared GO was greatly reduced in lateral size and thickness. In about 30 min, the thickness of GO decreased dramatically from several atomic layers to fewer atomic layers to a single atomic layer, which was completely stripped off; after that, the monolayer lateral size reduction dominated until it remained constant. Surface functional sites, such as hydroxyl groups, showed little change in the experiments. However, GO mainly reduces the C=O and C-O bonds in MER, except for the conjugated carbon backbone (C-C). The SER adsorption kinetics of all temperatures fitted the pseudo-first-order and pseudo-second-order models, yet room temperature preferred the latter. An overall adsorption enhancement appeared as sonication time, but the equilibrium capacity of SER GO generally increased with thickness and decreased with the single-layer lateral size, while MER GO conversed concerning the thickness. The escalated temperature facilitated the exfoliation of GO regarding the adsorption mechanism. Thus, the isotherm behaviors of the SER GO changed from the Freundlich model to Langmuir as size and temperature changed, while the MER GO were all of the Freundlich. A record capacity of ~4.3 g of AO per gram of GO was obtained from the MER adsorption with a sixty-minute ultrasonicated GO at 313.15 K. This work promises a cornerstone for MER adsorption with GO as an adsorbent.

18.
Nat Commun ; 14(1): 2162, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061542

ABSTRACT

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Subject(s)
Drosophila Proteins , Protein Interaction Maps , Animals , Protein Interaction Maps/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila/genetics , Saccharomyces cerevisiae/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Protein Interaction Mapping/methods , Two-Hybrid System Techniques
19.
Sci Rep ; 13(1): 3790, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882512

ABSTRACT

Stability control of electrohydrodynamic (EHD) printing technology is urgent needed for efficient fabrication of flexible electronics. In this study, a new fast on-off controlling technology for micro droplets of EHD is proposed by applying an AC induced voltage. The suspending droplet interface is broken through quickly, and the impulse current can be significantly reduced from 527.2 to 50.14 nA, which greatly reduces its negative impact on jet stability. What's more, time interval of jet generation can be shortened by a factor of three, while not only significantly improving the uniformity of the droplets, but effectively reducing the droplet size from 195 to 104 µm. Moreover, the controllable and mass formation of micro droplets are realized, but also the structure of each droplet is able to be controlled independently, which promoted the development of EHD printing technology in more fields.

20.
Nutrients ; 15(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986244

ABSTRACT

Lactate metabolism plays a pivotal role in cancers but is often overlooked in lung cancer (LC). Folate deficiency has been linked to lung cancer development, but its impact on lactate metabolism and cancer malignancy is unclear. To investigate this, mice were fed either a folate-deficient (FD) or control diet and intrapleurally implanted with lung cancer cells pre-exposed to FD growth medium. Results showed that FD promoted lactate over-production and the formation of tumor oncospheroids (LCSs) with increased metastatic, migration, and invasion potential. Mice implanted with these cells and fed an FD diet developed hyperlactatemia in blood and lungs. This coincided with increased expression of hexokinase 2 (HK2), lactate dehydrogenase (LDH), and decreased expression of pyruvate dehydrogenase (PDH). Pre-treatment of the FD-LCS-implanted mice with the mTORC1 inhibitor, rapamycin, and the anti-metabolic drug metformin abolished FD/LCS-activated mTORC1 and its targets including HIF1α, HK2, LDH, and monocarboxylate transporters (MCT1 and MCT4), which coincided with the reduction in lactate disorders and prevention of LC metastasis. The findings suggest that dietary FD promotes lactate metabolic disorders that sensitize lung cancer metastasis through mTOR-signaling-mediated targets.


Subject(s)
Folic Acid Deficiency , Lung Neoplasms , Malnutrition , Metabolic Diseases , Animals , Mice , Lactic Acid/metabolism , Folic Acid/pharmacology , Lung Neoplasms/metabolism , Folic Acid Deficiency/complications , L-Lactate Dehydrogenase/metabolism , Diet , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monocarboxylic Acid Transporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL