Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Imeta ; 3(1): e175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868508

ABSTRACT

The increasing application of meta-omics approaches to investigate the structure, function, and intercellular interactions of microbial communities has led to a surge in available data. However, this abundance of human and environmental microbiome data has exposed new scalability challenges for existing bioinformatics tools. In response, we introduce Wekemo Bioincloud-a specialized platform for -omics studies. This platform offers a comprehensive analysis solution, specifically designed to alleviate the challenges of tool selection for users in the face of expanding data sets. As of now, Wekemo Bioincloud has been regularly equipped with 22 workflows and 65 visualization tools, establishing itself as a user-friendly and widely embraced platform for studying diverse data sets. Additionally, the platform enables the online modification of vector outputs, and the registration-independent personalized dashboard system ensures privacy and traceability. Wekemo Bioincloud is freely available at https://www.bioincloud.tech/.

2.
Imeta ; 3(2): e180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882491

ABSTRACT

Inflammatory bowel disease (IBD) is a significant global health concern. The gut microbiota plays an essential role in the onset and development of IBD. Sanghuangporus (SH), a traditional Chinese medicinal mushroom, has excellent anti-inflammatory effects and is effective at modulating the gut microbiota. Despite these attributes, the specific anticolitic effects of SH and the mechanisms through which the gut microbiota mediates its benefits remain unclear. Herein, we demonstrated that polyphenol-rich extract from SH effectively alleviated the pathological symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by modulating the gut microbiota. Treatment with SH distinctly enriched Alistipes, especially Alistipes onderdonkii, and its metabolite 5-hydroxyindole-3-acetic acid (5HIAA). Oral gavage of live A. onderdonkii or 5HIAA potently mitigated DSS-induced colitis in mice. Moreover, both 5HIAA and SH significantly activated the aromatic hydrocarbon receptor (AhR), and the administration of an AhR antagonist abrogated their protective effects against colitis. These results underscore the potent efficacy of SH in diminishing DSS-induced colitis through the promotion of A. onderdonkii and 5HIAA, ultimately activating AhR signaling. This study unveils potential avenues for developing therapeutic strategies for colitis based on the interplay between SH and the gut microbiota.

3.
Imeta ; 3(2): e178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882492

ABSTRACT

The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.

4.
Imeta ; 3(3): e185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898981

ABSTRACT

The vaginal microbiome plays an essential role in the reproductive health of human females. As infertility increases worldwide, understanding the roles that the vaginal microbiome may have in infertility and in vitro fertilization (IVF) treatment outcomes is critical. To determine the vaginal microbiome composition of 1411 individuals (1255 undergoing embryo transplantation) and their associations with reproductive outcomes, clinical and biochemical features are measured, and vaginal samples are 16S rRNA sequenced. Our results suggest that both too high and too low abundance of Lactobacillus is not beneficial for pregnancy; a moderate abundance is more beneficial. A moderate abundance of Lactobacillus crispatus and Lactobacillus iners (~80%) (with a pregnancy rate of I-B: 54.35% and III-B: 57.73%) is found beneficial for pregnancy outcomes compared with a higher abundance (>90%) of Lactobacillus (I-A: 44.81% and III-A: 51.06%, respectively). The community state type (CST) IV-B (contains a high to moderate relative abundance of Gardnerella vaginalis) shows a similar pregnant ratio (48.09%) with I-A and III-A, and the pregnant women in this CST have a higher abundance of Lactobacillus species. Metagenome analysis of 71 samples shows that nonpregnant women are detected with more antibiotic-resistance genes, and Proteobacteria and Firmicutes are the main hosts. The inherent differences within and between women in different infertility groups suggest that vaginal microbes might be used to detect infertility and potentially improve IVF outcomes.

5.
Imeta ; 3(3): e184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898979

ABSTRACT

Venn diagrams serve as invaluable tools for visualizing set relationships due to their ease of interpretation. Widely applied across diverse disciplines such as metabolomics, genomics, transcriptomics, and proteomics, their utility is undeniable. However, the operational complexity has been compounded by the absence of standardized data formats and the need to switch between various platforms for generating different Venn diagrams. To address these challenges, we introduce the EVenn platform, a versatile tool offering a unified interface for efficient data exploration and visualization of diverse Venn diagrams. EVenn (http://www.ehbio.com/test/venn) streamlines the data upload process with a standardized format, enhancing the capabilities for multimodule analysis. This comprehensive protocol outlines various applications of EVenn, featuring representative results of multiple Venn diagrams, data uploads in the centralized data center, and step-by-step case demonstrations. Through these functionalities, EVenn emerges as a valuable and user-friendly tool for the in-depth exploration of multiomics data.

6.
Food Chem ; 451: 139377, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703722

ABSTRACT

Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.


Subject(s)
Bacteria , Microbiota , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fermentation , Metabolomics , Temperature , Fermented Foods/analysis , Fermented Foods/microbiology
7.
Int J Biol Macromol ; 271(Pt 2): 132593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788865

ABSTRACT

This study delves into the effects of curdlan integration and thermal sterilization on the rheological properties, structure, and quality attributes of concentrated rice starch gel. Acting as a heat-set polysaccharide, curdlan established a dual-network gel structure with rice starch gel, displaying strong interactions with rice starch, as confirmed by confocal laser scanning microscopy and Fourier-transform infrared spectroscopy. The addition of curdlan expedited the gel formation of rice starch, yielding a denser gel structure. Consequently, this enhanced G', solid-like behavior, textural properties, and cooking quality while reducing frequency-dependence. Given the cooling-induced gelation behavior of pure rice starch, thermal treatment disrupted inter-chain hydrogen bonding, compromising the structural integrity of the gel. This disruption manifested in a softer texture and diminished mechanical properties and cooking quality. Notably, this decline in mechanical properties and cooking quality of rice starch gel was markedly ameliorated with the incorporation of curdlan, particularly at a content of ≥1.0 %. Compared with pure RS, 1.0 % CD inclusion showed a reduction in cooking breakage rate by 30.69 % and an increase in hardness by 38.04 %. This work provides valuable insights for the advancement of fresh starch gel-based foods that exhibit exceptional quality and an extended shelf life.


Subject(s)
Gels , Oryza , Rheology , Starch , beta-Glucans , Oryza/chemistry , beta-Glucans/chemistry , Starch/chemistry , Gels/chemistry , Sterilization/methods , Hot Temperature , Spectroscopy, Fourier Transform Infrared , Cooking/methods
8.
J Colloid Interface Sci ; 670: 279-287, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763024

ABSTRACT

Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.


Subject(s)
Antineoplastic Agents , Glutathione , Nanoparticles , Photochemotherapy , Prodrugs , Reactive Oxygen Species , Glutathione/metabolism , Glutathione/chemistry , Nanoparticles/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Humans , Reactive Oxygen Species/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Animals , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Mice , Drug Screening Assays, Antitumor , Particle Size , Hydrogen Peroxide/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects , Surface Properties , Cell Line, Tumor , Drug Liberation , Tumor Microenvironment/drug effects , Indolequinones
9.
Microbiol Res ; 285: 127747, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739956

ABSTRACT

BACKGROUND: The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS: Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS: Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS: Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Metagenomics , Multigene Family , Phylogeny , Pseudomonas aeruginosa , Tigecycline , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Bacterial Proteins/genetics , Computational Biology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
10.
Langmuir ; 40(16): 8608-8616, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38603547

ABSTRACT

In this work, an effective strategy for the large-scale fabrication of highly porous CuO/Cu2O/Cu/carbon (P-Cu-C) has been established. Cu-cross-linked aerogels were first continuously prepared using a continuous flow mode to form uniform beads, which were transformed into P-Cu-C with a subsequent pyrolysis process. Various pyrolysis temperatures were used to form a series of P-Cu-C including P-Cu-C-250, P-Cu-C-200, P-Cu-C-350, and P-Cu-C-450 to investigate suitable pyrolysis conversion processes. The obtained P-Cu-C series were utilized as anodes of lithium-ion batteries, in which P-Cu-C-250 exhibited a higher reversible gravimetric capacity, excellent rate capability, and superior cycle stability. The enhanced behavior of P-Cu-C-250 was benefitted from the synergistic interaction between uniformly dispersed CuO, Cu2O, Cu nanoparticles, and highly graphitized carbon with a large surface area and highly porous structure. More importantly, the preparation of P-Cu-C-250 could be scaled up by taking advantage of the continuous flow synthesis mode, which may provide pilot- or industrial-scale applications. The large-scale fabrication proposed here may give a universal method to fabricate highly porous metal oxide-carbon anode materials for electrochemical energy conversion and storage applications. Porous CuO/Cu2O/Cu/carbon derived from Cu-crosslinked aerogels was used as Li-ion battery anode materials, exhibiting a high reversible areal capacity, large gravimetric capacity, superior cycling performance, and excellent rate capacity. A continuous preparation method is established to ensure the product scaled up.

11.
Brain Res Bull ; 212: 110964, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670471

ABSTRACT

Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.


Subject(s)
Argon , Ischemic Stroke , Neuroprotective Agents , Argon/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Humans , Ischemic Stroke/drug therapy , Oxidative Stress/drug effects , Neuroprotection/drug effects , Neuroprotection/physiology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
12.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38448160

ABSTRACT

In meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase I. The conserved meiosis-specific kinetochore protein meikin (Moa1 in fission yeast) associates with polo-like kinase: Plo1 and regulates both mono-orientation and cohesion protection. Although the phosphorylation of Rec8-S450 by Plo1 associated with Moa1 plays a key role in cohesion protection, how Moa1-Plo1 regulates mono-orientation remains elusive. Here, we identify Plo1 phosphorylation sites in the cohesin subunits, Rec8 and Psm3. The non-phosphorylatable mutations at these sites showed specific defects in mono-orientation. These results enabled the genetic dissection of meikin functions at the centromeres.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Kinetochores , Phosphorylation , Cohesins , Meiosis , Centromere , Schizosaccharomyces/genetics , Protein Serine-Threonine Kinases , Schizosaccharomyces pombe Proteins/genetics , Cell Cycle Proteins/genetics
13.
Nat Commun ; 15(1): 2179, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467684

ABSTRACT

Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.


Subject(s)
Ecosystem , Metagenome , Silicates , Metagenome/genetics , Metagenomics/methods
14.
Environ Sci Pollut Res Int ; 31(14): 21668-21686, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393572

ABSTRACT

China, the world's largest consumer and producer of pork in the world, is attracting increasing attention due to the environmental impacts of its pig production. Previous studies seldom comprehensively compare the environmental impacts of the pig production system with different models, resulting in different intensities of environmental impacts. We aim to comprehensively evaluate Chinese pig production with different breeding models and explore a more sustainable way for pig production. We use life cycle assessment (LCA) to evaluate and compare environmental impacts of pig production system with four main breeding models in China from 1998 to 2020: domestic breeding, small-scale breeding, medium-scale breeding, and large-scale breeding. The life cycle encompasses fertilizer production, feed production, feed processing, pig raising, waste treatment, and slaughtering. The impact categories including energy consumption (EN), global warming (GWP), acidification (AP), eutrophication (EU), water use (WD), and land occupation (LO) are expressed with "100 kg live weight of fattening pig at farm gate." The results show that driven by governmental support, growing meat demand, and cost advantage, the scale breeding especially large-scale breeding simultaneously yielded greater net economic benefit and less environmental impact compared to other breeding models especially the domestic breeding. Due to mineral fertilizer application, feed production contributed over 50% of the total environmental impacts. Notably, the composition of feeds exerted significant influence on the environmental impacts arising from fertilizer production and feed processing. Furthermore, attributable to the substantial use of electricity and heat, as well as the concomitant emissions, pig raising contributed the largest GWP, while ranking second in terms of AP and EU. Notably, waste management constituted the third-largest EU, AP, and WD. In addition to promote scale breeding, we put forth several sustainable measures encompassing feed composition, cultivation practices, fertilizer utilization, and waste management for consideration.


Subject(s)
Conservation of Natural Resources , Fertilizers , Animals , Swine , Farms , Global Warming , China
15.
16.
Sci Total Environ ; 919: 170843, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340821

ABSTRACT

Machine learning has been increasingly used to retrieve chlorophyll-a (Chl-a) in optically variable waters. However, without the guidance of physical principles or expert knowledge, machine learning may produce biased mapping relationships, or waste considerable time searching for physically infeasible hyperparameter domains. In addition, most Chl-a retrieval models cannot evaluate retrieval uncertainty when ground observations are not available, and the retrieval uncertainty is crucial for understanding the model limitations and evaluating the reliability of retrieval results. In this study, we developed a novel knowledge-guided mixture density network to retrieve Chl-a in optically variable inland waters based on Sentinel-3 Ocean and Land Color Instrument (OLCI) imagery. The proposed method embedded prior knowledge derived from spectral shape classification into the mixture density network. Compared to another deterministic model, the knowledge-guided mixture density network outputted the conditional distribution of Chl-a given an input spectrum, enabling us to estimate the optimal retrieval and the associated uncertainty. The proposed method showed favorable correspondence with the field Chl-a, with root mean square error (RMSE) of 6.56 µg/L, and mean absolute percentage error (MAPE) of 43.64 %. Calibrated against Sentinel-3 OLCI spectrum, the proposed method also performed well when applied to field spectrum (RMSE = 4.58 µg/L, MAPE = 72.70 %), suggesting its effectiveness and good generalization. The proposed method provided the standard deviation of each estimated Chl-a, which enabled us to inspect the reliability of the estimated results and understand the model limitations. Overall, the proposed method improved the Chl-a retrieval in terms of model accuracy and uncertainty evaluation, providing a more comprehensive Chl-a observation of inland waters.

17.
Food Chem ; 441: 138381, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38218150

ABSTRACT

The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH2-MIL-101@MoS2, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH2-MIL-101(NH2-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties. The ratio (IBQ /ITB) was changed by varying the electrochemical signal of benzoquinone (BQ) (IBQ) and the amount of TB deposition (ITB). This aptasensor was successfully applied to detect DON in malt and peach seed, which exhibited a great linear range from 1 fg/mL to 10 ng/mL and low detection limit of 0.31 fg/mL for DON.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Trichothecenes , Humans , Metal-Organic Frameworks/chemistry , Peroxidase/chemistry , Molybdenum , Coloring Agents , Limit of Detection , Electrochemical Techniques , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry
18.
CNS Neurosci Ther ; 30(3): e14433, 2024 03.
Article in English | MEDLINE | ID: mdl-37641878

ABSTRACT

BACKGROUND: As a multi-disease model, neuroinflammation, mitochondrial dysfunction, and oxidative stress might be involved in the pathogenic process of perioperative neurocognitive dysfunction (PND). Dynamin-related protein 1 (Drp1) could mediate mitochondrial fission and play important roles in mitochondrial dynamic homeostasis and mitochondria function. The Drp1 may be involved in PND development. The cold-inducible RNA-binding protein (Cirbp) could bind to the 3'-UTR of the thioredoxin 1 (Trx1) mRNA, control oxidative stress, and improve mitochondrial function. In this study, we hypothesized that the Cirbp-Trx1 pathway could ameliorate mitochondrial dysfunction and Drp1 levels in PND mice. METHODS: Differentially expressed genes were screened using the Gene Expression Omnibus (GEO) database GSE95426 and validated using PCR. Eighteen-month-old C57BL/6 mice were subjected to tibial fracture surgery to generate a PND model. Cirbp was upregulated by hippocampal stereotaxic injections of over-Cirbp plasmid according to the manufacturer's instructions for the in vivo DNA transfection reagent. Cirbp expression was measured using western blot (WB) and immunofluorescence (IF). The Morris water maze (MWM) was used to assess cognitive function. After behavioral testing, the hippocampal tissue was extracted to examine changes in mitochondrial Drp1, mitochondrial function, neuroinflammation, and oxidative stress. RESULTS: Differential gene screening showed that Cirbp expression was significantly downregulated (fold change >1.5, p = 0.003272) in the PND model. In this study, we also found that Cirbp protein levels were downregulated, accompanied by an impairment of cognition, a decrease in superoxide dismutase (SOD) activity, and an increase in malondialdehyde (MDA) content, mitochondrial Drp1 levels, neuroinflammation, and apoptosis. Cirbp overexpression increased Trx1 protein levels and reversed the damage. However, this protective effect was abolished by PX-12 treatment with a Trx1 inhibitor. CONCLUSIONS: The Cirbp-Trx1 pathway may regulate mitochondrial dysfunction and mitochondrial Drp1 expression in the hippocampus of PND mice to ameliorate cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Mitochondrial Diseases , Animals , Mice , Cognitive Dysfunction/metabolism , Dynamins/genetics , Dynamins/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Dynamics/genetics , Neuroinflammatory Diseases , RNA-Binding Proteins/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
19.
Fish Shellfish Immunol ; 144: 109274, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072135

ABSTRACT

Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN Ⅲ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.


Subject(s)
Interferon-gamma , Perciformes , Animals , Nuclear Localization Signals/genetics , Amino Acid Sequence , Phylogeny , DNA, Complementary , Amino Acids/genetics
20.
Water Res ; 250: 121010, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142507

ABSTRACT

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Subject(s)
Alkaloids , Cyanobacteria , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/metabolism , Cyanobacteria/metabolism , Cyanobacteria Toxins , Phosphorus/metabolism , Uracil
SELECTION OF CITATIONS
SEARCH DETAIL