Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1381685, 2024.
Article in English | MEDLINE | ID: mdl-38638320

ABSTRACT

The construction of an antibacterial biological coating on titanium surface plays an important role in the long-term stability of oral implant restoration. Graphene oxide (GO) has been widely studied because of its excellent antibacterial properties and osteogenic activity. However, striking a balance between its biological toxicity and antibacterial properties remains a significant challenge with GO. ε-poly-L-lysine (PLL) has broad-spectrum antibacterial activity and ultra-high safety performance. Using Layer-by-layer self-assembly technology (LBL), different layers of PLL/GO coatings and GO self-assembly coatings were assembled on the surface of titanium sheet. The materials were characterized using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle test. The antibacterial properties of Porphyromonas gingivalis (P.g.) were analyzed through SEM, coated plate experiment, and inhibition zone experiment. CCK-8 was used to determine the cytotoxicity of the material to MC3T3 cells, and zebrafish larvae and embryos were used to determine the developmental toxicity and inflammatory effects of the material. The results show that the combined assembly of 20 layers of GO and PLL exhibits good antibacterial properties and no biological toxicity, suggesting a potential application for a titanium-based implant modification scheme.

2.
R Soc Open Sci ; 7(7): 192029, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32874608

ABSTRACT

A novel fabrication method of uniform porous structures on the glass surface is proposed. The hydrofluoric acid fog formed by air-jet atomization etches the glass surface to fabricate nanoporous structure (NPS) on glass surface. This NPS shows the enhanced average light transmittance of approximately 92.9% and the superhydrophilic property with a contact angle less than 1° which presents an excellent anti-fog property. Passivated by fluorosilane, the NPS shows nearly the superhydrophobic property with a contact angle of 141.2°. This fabrication method has shown promising application prospects due to its simplicity, low cost and efficiency, which can be easily applied to large-scale industrial production.

SELECTION OF CITATIONS
SEARCH DETAIL