Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Physiol Plant ; 176(4): e14419, 2024.
Article in English | MEDLINE | ID: mdl-38973451

ABSTRACT

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Subject(s)
Lactones , Plant Growth Regulators , Stress, Physiological , Lactones/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Plants/drug effects , Plants/genetics , Gene Expression Regulation, Plant/drug effects
2.
Front Plant Sci ; 15: 1330948, 2024.
Article in English | MEDLINE | ID: mdl-38828220

ABSTRACT

Abscisic acid (ABA) and nitric oxide (NO), as unique signaling molecules, are involved in plant growth, developmental processes, and abiotic stresses. However, the interaction between ABA and NO under abiotic stresses has little been worked out at present. Therefore, this paper reviews the mechanisms of crosstalk between ABA and NO in the regulation of plants in response to environmental stresses. Firstly, ABA-NO interaction can alleviate the changes of plant morphological indexes damaged by abiotic stresses, for instance, root length, leaf area, and fresh weight. Secondly, regulatory mechanisms of interaction between ABA and NO are also summarized, such as reactive oxygen species (ROS), antioxidant enzymes, proline, flavonoids, polyamines (PAs), ascorbate-glutathione cycle, water balance, photosynthetic, stomatal movement, and post-translational modifications. Meanwhile, the relationships between ABA and NO are established. ABA regulates NO through ROS at the physiological level during the regulatory processes. At the molecular level, NO counteracts ABA through mediating post-translational modifications. Moreover, we also discuss key genes related to the antioxidant enzymes, PAs biosynthesis, ABA receptor, NO biosynthesis, and flavonoid biosynthesis that are regulated by the interaction between ABA and NO under environmental stresses. This review will provide new guiding directions for the mechanism of the crosstalk between ABA and NO to alleviate abiotic stresses.

3.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914787

ABSTRACT

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Subject(s)
Cell Wall , Cold Temperature , Energy Metabolism , Fruit , Hydrogen Sulfide , Solanum lycopersicum , Cell Wall/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Fruit/metabolism , Fruit/genetics , Fruit/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Food Storage/methods , Sulfides/pharmacology , Sulfides/metabolism
4.
BMC Plant Biol ; 24(1): 97, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331770

ABSTRACT

BACKGROUND: Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS: The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION: The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.


Subject(s)
Melatonin , Solanum lycopersicum , Chlorophyll/metabolism , Melatonin/metabolism , Seedlings/metabolism , Solanum lycopersicum/genetics , Chlorophyll A/metabolism , Carbon Monoxide/metabolism , Carbon Monoxide/pharmacology , Drought Resistance , Heme/metabolism , Heme/pharmacology
5.
Proc Natl Acad Sci U S A ; 121(4): e2314454121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232283

ABSTRACT

The discoveries of ferromagnetism down to the atomically thin limit in van der Waals (vdW) crystals by mechanical exfoliation have enriched the family of magnetic thin films [C. Gong et al., Nature 546, 265-269 (2017) and B. Huang et al., Nature 546, 270-273 (2017)]. However, compared to the study of traditional magnetic thin films by physical deposition methods, the toolbox of the vdW crystals based on mechanical exfoliation and transfer suffers from low yield and ambient corrosion problem and now is facing new challenges to study magnetism. For example, the formation of magnetic superlattice is difficult in vdW crystals, which limits the study of the interlayer interaction in vdW crystals [M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Nat. Nanotechnol. 14, 408-419 (2019)]. Here, we report a strategy of interlayer engineering of the magnetic vdW crystal Fe3GeTe2 (FGT) by intercalating quaternary ammonium cations into the vdW spacing. Both three-dimensional (3D) vdW superlattice and two-dimensional (2D) vdW monolayer can be formed by using this method based on the amount of intercalant. On the one hand, the FGT superlattice shows a strong 3D critical behavior with a decreased coercivity and increased domain wall size, attributed to the co-engineering of the anisotropy, exchange interaction, and electron doping by intercalation. On the other hand, the 2D vdW few layers obtained by over-intercalation are capped with organic molecules from the bulk crystal, which not only enhances the ferromagnetic transition temperature (TC), but also substantially protects the thin samples from degradation, thus allowing the preparation of large-scale FGT ink in ambient environment.

6.
Psych J ; 12(6): 801-808, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942988

ABSTRACT

To examine the effect of future time perspective on middle school students' study engagement and explore the mediating role of motivation internalization and the moderating role of grit, we conducted a study in several middle schools. Six hundred sixty-four middle school students completed our measures. Results indicated that future time perspective positively predicted study engagement, and motivation internalization mediated the relationship between future time perspective and study engagement. It is also indicated that grit played a significant moderating role between motivation internalization and study engagement, with the effect of motivation internalization being stronger for low-grit students compared to high-grit students. These findings shed light on how to increase study engagement among middle school students.


Subject(s)
Motivation , Time Perception , Humans , Students , Schools , Forecasting
7.
Plant Physiol Biochem ; 205: 108159, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944244

ABSTRACT

Trehalose (Tre) plays a vital role in response to drought stress in plants but its regulatory mechanism remains unclear. Here, this study explores the mechanism of re-regulated drought tolerance during cucumber adventitious root formation. Our results indicate that 2 mM Tre displays remarkable drought alleviation in the aspect of root number, root length, fresh weight, and dry weight. Under drought stress, Tre could inhibit greatly the MDA, H2O2, and O2- accumulation, enhance obviously the activities of SOD, POD, and CAT enzymes and up-regulate significantly the transcript levels of SOD, POD, and CAT genes. Furthermore, Tre treatment also promotes Tre metabolism during drought stress: significantly increases starch and Tre contents and decreases glucose content, the biosynthesis enzymatic activity of the Tre metabolic pathway including TPS and TPP are enhanced and the activity of degradation enzyme THL is decreased, and corresponding genes TPS1, TPS2, TPPA, and TPPB are up-regulated. Tre significantly reversed the decrease caused by PEG in IAA, ethylene, ABA, and BR contents and the increase caused by PEG in GA3 and KT contents. Collectively, Tre appears to be the effective treatment in counteracting the negative effects of drought stress during adventitious root formation by regulating ROS, Tre metabolisms and plant hormones.


Subject(s)
Cucumis sativus , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Cucumis sativus/genetics , Cucumis sativus/metabolism , Reactive Oxygen Species , Trehalose/metabolism , Droughts , Hydrogen Peroxide , Superoxide Dismutase , Stress, Physiological
8.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298477

ABSTRACT

Melatonin (MT) and nitric oxide (NO) act as signaling molecules that can enhance cadmium (Cd) stress resistance in plants. However, little information is available about the relationship between MT and NO during seedling growth under Cd stress. We hypothesize that NO may be involved in how MT responds to Cd stress during seedling growth. The aim of this study is to evaluate the relationship and mechanism of response. The results indicate that different concentrations of Cd inhibit the growth of tomato seedlings. Exogenous MT or NO promotes seedling growth under Cd stress, with a maximal biological response at 100 µM MT or NO. The promotive effects of MT-induced seedling growth under Cd stress are suppressed by NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO may be involved in MT-induced seedling growth under Cd stress. MT or NO decreases the content of hydrogen peroxide (H2O2), malonaldehyde (MDA), dehydroascorbic acid (DHA), and oxidized glutathione (GSSG); improves the content of ascorbic acid (AsA) and glutathione (GSH) and the ratios of AsA/DHA and GSH/GSSG; and enhances the activities of glutathione reductase (GR), monodehydroascorbic acid reductase (MDHAR), dehydroascorbic acid reductase (DHAR), ascorbic acid oxidase (AAO), and ascorbate peroxidase (APX) to alleviate oxidative damage. Moreover, the expression of genes associated with the ascorbate-glutathione (AsA-GSH) cycle and reactive oxygen species (ROS) are up-regulated by MT or NO under Cd conditions, including AAO, AAOH, APX1, APX6, DHAR1, DHAR2, MDHAR, and GR. However, NO scavenger cPTIO reverses the positive effects regulated by MT. The results indicate that MT-mediated NO enhances Cd tolerance by regulating AsA-GSH cycle and ROS metabolism.


Subject(s)
Melatonin , Solanum lycopersicum , Antioxidants/pharmacology , Melatonin/pharmacology , Melatonin/metabolism , Seedlings/metabolism , Cadmium/metabolism , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Glutathione Disulfide/metabolism , Dehydroascorbic Acid/metabolism , Hydrogen Peroxide/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Oxidative Stress , Glutathione/metabolism , Oxidoreductases/metabolism
9.
Antioxidants (Basel) ; 12(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37237909

ABSTRACT

Strigolactones (SLs), as a new phytohormone, regulate various physiological and biochemical processes, and a number of stress responses, in plants. In this study, cucumber 'Xinchun NO. 4' is used to study the roles of SLs in seed germination under salt stress. The results show that the seed germination significantly decreases with the increase in the NaCl concentrations (0, 1, 10, 50, and 100 mM), and 50 mM NaCl as a moderate stress is used for further analysis. The different concentrations of SLs synthetic analogs GR24 (1, 5, 10, and 20 µM) significantly promote cucumber seed germination under NaCl stress, with a maximal biological response at 10 µM. An inhibitor of strigolactone (SL) synthesis TIS108 suppresses the positive roles of GR24 in cucumber seed germination under salt stress, suggesting that SL can alleviate the inhibition of seed germination caused by salt stress. To explore the regulatory mechanism of SL-alleviated salt stress, some contents, activities, and genes related to the antioxidant system are measured. The malondialdehyde (MDA), H2O2, O2-, and proline contents are increased, and the levels of ascorbic acid (AsA) and glutathione (GSH) are decreased under salt stress conditions, while GR24 treatment reduces MDA, H2O2, O2-, and proline contents, and increases AsA and GSH contents during seed germination under salt stress. Meanwhile, GR24 treatment enhances the decrease in the activities of antioxidant enzymes caused by salt stress [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)], following which antioxidant-related genes SOD, POD, CAT, APX, and GRX2 are up-regulated by GR24 under salt stress. However, TIS108 reversed the positive effects of GR24 on cucumber seed germination under salt stress. Together, the results of this study revealed that GR24 regulates the expression levels of genes related to antioxidants and, therefore, regulates enzymatic activity and non-enzymatic substances and enhances antioxidant capacity, alleviating salt toxicity during seed germination in cucumber.

10.
J Exp Clin Cancer Res ; 42(1): 38, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36721234

ABSTRACT

BACKGROUND: Hepatic inflammation is a common initiator of liver diseases and considered as the primary driver of hepatocellular carcinoma (HCC). However, the precise mechanism of inflammation-induced HCC development and immune evasion remains elusive and requires extensive investigation. This study sought to identify the new target that is involved in inflammation-related liver tumorigenesis. METHODS: RNA-sequencing (RNA-seq) analysis was performed to identify the differential gene expression signature in primary human hepatocytes treated with or without inflammatory stimulus. A giant E3 ubiquitin protein ligase, HECT domain and RCC1-like domain 2 (HERC2), was identified in the analysis. Prognostic performance in the TCGA validation dataset was illustrated by Kaplan-Meier plot. The functional role of HERC2 in HCC progression was determined by knocking out and over-expressing HERC2 in various HCC cells. The precise molecular mechanism and signaling pathway networks associated with HERC2 in HCC stemness and immune evasion were determined by quantitative real-time PCR, immunofluorescence, western blot, and transcriptomic profiling analyses. To investigate the role of HERC2 in the etiology of HCC in vivo, we applied the chemical carcinogen diethylnitrosamine (DEN) to hepatocyte-specific HERC2-knockout mice. Additionally, the orthotopic transplantation mouse model of HCC was established to determine the effect of HERC2 during HCC development. RESULTS: We found that increased HERC2 expression was correlated with poor prognosis in HCC patients. HERC2 enhanced the stemness and PD-L1-mediated immune evasion of HCC cells, which is associated with the activation of signal transducer and activator of transcription 3 (STAT3) pathway during the inflammation-cancer transition. Mechanically, HERC2 coupled with the endoplasmic reticulum (ER)-resident protein tyrosine phosphatase 1B (PTP1B) and limited PTP1B translocation from ER to ER-plasma membrane junction, which ameliorated the inhibitory role of PTP1B in Janus kinase 2 (JAK2) phosphorylation. Furthermore, HERC2 knockout in hepatocytes limited hepatic PD-L1 expression and ameliorated HCC progression in DEN-induced mouse liver carcinogenesis. In contrast, HERC2 overexpression promoted tumor development and progression in the orthotopic transplantation HCC model. CONCLUSION: Our data identified HERC2 functions as a previously unknown modulator of the JAK2/STAT3 pathway, thereby promoting inflammation-induced stemness and immune evasion in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , B7-H1 Antigen , STAT3 Transcription Factor , Immune Evasion , Liver Neoplasms/genetics , Carcinogenesis , Inflammation/genetics , Ubiquitin-Protein Ligases , Guanine Nucleotide Exchange Factors
11.
Org Biomol Chem ; 21(9): 1878-1882, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36789479

ABSTRACT

Pd-catalyzed ortho-C(sp3)-H arylation of aromatic aldehydes using 2-amino-N-methyl-acetamide as a simple, efficient and commercially available L,L-type transient directing group (TDG) is reported. The reaction exhibited excellent substrate compatibility and generated the desired products in moderate-to-high yields up to 78%. Further acid-catalyzed cyclization and dehydrative aromatization were also tested, and furnished some polycyclic aromatic hydrocarbons with excellent yields up to 96%. The X-ray crystal structure of a 2-methylbenzaldehyde ortho-C(sp3)-H palladation intermediate was obtained. Then, a plausible reaction mechanism involving the formation of a [5,6]-fused palladacycle was proposed. This approach offers valuable insights for exploiting novel L,L-type TDGs.

12.
ACS Appl Mater Interfaces ; 14(47): 53057-53064, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36384298

ABSTRACT

Hafnia-based ferroelectric thin films are promising for semiconductor memory and neuromorphic computing applications. Amorphous, as-deposited, thin-film binary alloys of HfO2 and ZrO2 transform to the metastable, orthorhombic ferroelectric phase during post-deposition annealing and cooling. This transformation is generally thought to involve formation of a tetragonal precursor phase that distorts into the orthorhombic phase during cooling. In this work, we systematically study the effects of atomic layer deposition (ALD) temperature on the ferroelectricity of post-deposition-annealed Hf0.5Zr0.5O2 (HZO) thin films. Seed crystallites having interplanar spacings consistent with the polar orthorhombic phase are observed by a plan-view transmission electron microscope in HZO thin films deposited at an elevated ALD temperature. After ALD under conditions that promote formation of these nanocrystallites, high-polarization (Pr > 18 µC/cm2) ferroelectric switching is observed after rapid thermal annealing (RTA) at low temperature (350 °C). These results indicate the presence of minimal non-ferroelectric phases retained in the films after RTA when the ALD process forms nanocrystalline particles that seed subsequent formation of the polar orthorhombic phase.

13.
Nano Lett ; 22(20): 8224-8232, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36214378

ABSTRACT

Poor fast-charge capabilities limit the usage of rechargeable Li metal anodes. Understanding the connection between charging rate, electroplating mechanism, and Li morphology could enable fast-charging solutions. Here, we develop a combined electroanalytical and nanoscale characterization approach to resolve the current-dependent regimes of Li plating mechanisms and morphology. Measurement of Li+ transport through the solid electrolyte interphase (SEI) shows that low currents induce plating at buried Li||SEI interfaces, but high currents initiate SEI-breakdown and plating at fresh Li||electrolyte interfaces. The latter pathway can induce uniform growth of {110}-faceted Li at extremely high currents, suggesting ion-transport limitations alone are insufficient to predict Li morphology. At battery relevant fast-charging rates, SEI-breakdown above a critical current density produces detrimental morphology and poor cyclability. Thus, prevention of both SEI-breakdown and slow ion-transport in the electrolyte is essential. This mechanistic insight can inform further electrolyte engineering and customization of fast-charging protocols for Li metal batteries.

14.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36233003

ABSTRACT

Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.


Subject(s)
Anthocyanins , Transcription Factors , Antioxidants , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cytokinins , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Plants, Genetically Modified/metabolism , Transcription Factors/metabolism
15.
Pathogens ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145481

ABSTRACT

The Cat Que orthobunyavirus has been found in mosquitoes, birds, pigs, and humans, suggesting its wide range of hosts and potential public health implications. During arbovirus surveillance in 2013, the HN1304M virus was isolated from naturally occurring Culicoides biting midges in Hunan Province, southern China. The virus was cytopathic to BHK-21 cells and showed stable passage, but was not cytopathic to C6/36 cells. Determination and analysis of the viral genome sequence revealed that HN1304M is an RNA virus with three gene segments, namely, L, M, and S. The nucleotide and amino acid sequence homologies of HN1304M to Cat Que viruses in the Manzanilla species complex were 90.3-99.4%, and 95-100%, respectively, while the homologies to other viruses in this species complex were 74-86.6% and 78.1-96.1%, respectively. A phylogenetic analysis of the viral genes revealed that HN1304M formed an evolutionary branch with other Cat Que viruses isolated from mosquitoes, pigs, birds, and humans, which was completely independent of the other viruses in this complex. The fact that the Cat Que virus was isolated from Culicoides suggests that biting midges may participate in the natural circulation of Cat Que viruses.

16.
Nat Commun ; 13(1): 4804, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974017

ABSTRACT

Metabolite alteration has been associated with the pathogenesis of inflammatory bowel disease (IBD), including colitis. Mannose, a natural bioactive monosaccharide that is involved in metabolism and synthesis of glycoproteins, exhibits anti-inflammatory and anti-oxidative activities. We show here that the circulating level of mannose is increased in patients with IBD and mice with experimental colitis. Mannose treatment attenuates intestinal barrier damage in two mouse colitis models, dextran sodium sulfate (DSS)-induced colitis and spontaneous colitis in IL-10-deficient mice. We demonstrate that mannose treatment enhanced lysosomal integrity and limited the release of cathepsin B, preventing mitochondrial dysfunction and myosin light chain kinase (MLCK)-induced tight junction disruption in the context of intestinal epithelial damage. Mannose exerts a synergistic therapeutic effect with mesalamine on mouse colitis. Cumulatively, the results indicate that mannose supplementation may be an optional approach to the treatment of colitis and other diseases associated with intestinal barrier dysfunction.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Mannose/metabolism , Mannose/pharmacology , Mice , Mice, Inbred C57BL , Tight Junctions/metabolism
17.
J Inflamm Res ; 15: 4315-4329, 2022.
Article in English | MEDLINE | ID: mdl-35923908

ABSTRACT

Objective: Mannan-binding lectin (MBL), a soluble pattern recognition molecule of the innate immune system, is primarily synthesized in the liver and secreted into the circulation. Low serum level of MBL has been reported to be related to an increased risk of lung diseases. Herein, we aimed to investigate the function of MBL in silicosis-associated pulmonary inflammation. Methods: Serum collected from silicosis patients was tested for correlation between serum MBL levels and Th17 immunity. In vitro studies were performed to further demonstrated the effect of MBL on Th17 polarization. Silica was intratracheally injected in wild type (WT) or MBL-deficient (MBL-/-) mice to induce silicosis-associated lung inflammation and fibrosis. Th17 response was evaluated to explore the effect of MBL on silicosis in vivo. Results: Silicosis patients with high serum MBL levels displayed ameliorative lung function. We demonstrated that serum MBL levels negatively correlated to Th17 cell frequency in silicosis patients. MBL protein markedly reduced expression of IL-17 but enhanced expression of Foxp3 in CD4+ T cells in vitro when subjected to Th17 or Treg polarizing conditions, respectively. The presence of MBL during Th17 cell polarization significantly limited aryl hydrocarbon receptor (AhR) expression and suppressed the signal transducer and activator of transcription 3 (STAT3) phosphorylation. Treatment with the AhR antagonist abolished the effect of MBL on Th17 response. Strikingly, MBL directly bound to AhR and affected its nuclear translocation. Furthermore, MBL-/- mice displayed elevated Th17 cell levels compared with WT mice in response to the silica challenge. The CD4+ T lymphocytes from silica-administrated MBL-/- mice exhibited more AhR expression than the wild-type counterparts. Conclusion: Our study suggested that MBL limited the Th17 immunity via controlling the AhR/STAT3 pathway, thus providing new insight into silicosis and other inflammatory diseases in patients with MBL deficiency.

18.
J Innate Immun ; : 1-13, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35671705

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a type of idiopathic interstitial pneumonia with a poor clinical prognosis. Increasing evidence has demonstrated that epithelial-mesenchymal transition (EMT) contributes to the production of pathogenic myofibroblasts and plays a pivotal role in the development of pulmonary fibrosis. Mannan-binding lectin (MBL) is a soluble calcium-dependent complement molecule. Several studies have reported associations between serum MBL levels and lung diseases; however, the effect of MBL on IPF remains unknown. The present study observed aggravated pulmonary fibrosis in bleomycin-treated MBL-/- mice compared with their wild-type counterparts. Lung tissues from bleomycin-treated MBL-/- mice displayed a more severe EMT phenotype. In vitro studies determined that MBL inhibited the EMT process through attenuating store-operated calcium entry (SOCE) signaling. It was further demonstrated that MBL promoted the ubiquitination of Orai1, an essential component of SOCE, via pyruvate dehydrogenase kinase 1 (PDK1)-serum glucocorticoid-regulated kinase 1 signaling. PDK1 inhibition abolished the MBL-mediated regulation of SOCE activity and the EMT process. Notably, biochemical analysis showed that MBL interacted with PDK1 and contributed to PDK1 ubiquitination. In summary, the present findings suggested that MBL limited the EMT phenotype in human alveolar epithelial cells through regulation of SOCE, and MBL could be recognized as a potential therapeutic target for IPF.

19.
ACS Nano ; 16(4): 6334-6348, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35377139

ABSTRACT

The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as excellent electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates─MSb2O6, where M = Mn, Fe, Co, and Ni─as nonprecious metal catalysts with good oxygen binding energetics, conductivity, thermodynamic phase stability, and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e- ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by theoretical Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a framework to tune the activity and selectivity of nonprecious metal oxide active sites for ORR catalysis.

20.
Int J Biol Sci ; 18(4): 1580-1593, 2022.
Article in English | MEDLINE | ID: mdl-35280697

ABSTRACT

Background: Mannan-binding lectin (MBL), a soluble pattern recognition molecule in the innate immune system, is reported to be associated with the function of immune cells. Myeloid-derived suppressor cells (MDSCs) are mainly characterized by immunosuppressive activities involving several inflammatory diseases such as cancer, infection, and arthritis. Some of the factors inducing their apoptosis are known, however, mechanisms have not been identified. The underlying impact of MBL on the MDSCs especially under inflammatory conditions remains unknown. This study was designed to investigate whether MBL affects MDSCs survival during inflammation conditions. Methods: WT and MBL-deficient (MBL-/-) mice were induced on day 0 of the experiment by subcutaneous injection of complete Freund's adjuvant and then injected with incomplete Freund's adjuvant into the knee joint space under general anesthesia on day 14 to induce inflammatory arthritis. The proportions of MDSCs in the spleen and blood and the serum level of the inflammatory cytokines were measured. In vitro study, MDSCs were isolated from the bone marrow of WT and MBL-/- mice and cultured in the presence of interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF) for 5 days with or without tumor necrosis factor-alpha (TNF-α). Results: After adjuvant treatment, MBL-/- mice had a significantly lower frequency of MDSCs as well as elevated serum inflammatory cytokines levels compared to WT mice. MBL deficiency markedly inhibited the MDSCs frequency from mice bone marrow induced by IL-6 and GM-CSF in the presence of TNF-α in vitro. Mechanistic studies established that MBL inhibited MDSCs apoptosis via down-regulation of TNF-α/tumor necrosis factor-alpha receptor 1 (TNFR1) signaling pathway and subsequent caspase 3-dependent manner. Conclusion: Mannan-binding lectin deficiency inhibits myeloid-derived suppressor cells expansion via modulating TNF-α triggered apoptosis.


Subject(s)
Arthritis , Mannose-Binding Lectin , Myeloid-Derived Suppressor Cells , Animals , Apoptosis/genetics , Arthritis/metabolism , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Inflammation/metabolism , Interleukin-6/metabolism , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Mice , Myeloid-Derived Suppressor Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...