Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Med ; 27(1): 56, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34058990

ABSTRACT

BACKGROUND: Hyaluronan (HA) metabolism by chondrocytes is important for cartilage development and homeostasis. However, information about the function of circular RNAs (circRNAs) in HA metabolism is limited. We therefore profiled the role of the novel HA-related circRNA circHYBID in the progression of osteoarthritis (OA). METHODS: CircHYBID function in HA metabolism in chondrocytes was investigated using gain-of-function experiments, and circHYBID mechanism was confirmed via bioinformatics analysis and luciferase assays. The expression of circHYBID-hsa-miR-29b-3p-transforming growth factor (TGF)-ß1 axis was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. CircHYBID, TGF-ß1, and HA levels in cartilage samples were evaluated using qRT-PCR and pathological examination. Enzyme-linked immunosorbent assay was used to assess HA accumulation in chondrocyte supernatant. RESULTS: CircHYBID expression was significantly downregulated in damaged cartilage samples compared with that in the corresponding intact cartilage samples. CircHYBID expression was positively correlated with alcian blue score. Interleukin-1ß stimulation in chondrocytes downregulated circHYBID expression and decreased HA accumulation. Gain-of-function experiments revealed that circHYBID overexpression in chondrocytes increased HA accumulation by regulating HA synthase 2 and HYBID expression. Further mechanism analysis showed that circHYBID upregulated TGF-ß1 expression by sponging hsa-miR-29b-3p. CONCLUSIONS: Our results describe a novel HA-related circRNA that could promote HA synthesis and accumulation. The circHYBID-hsa-miR-29b-3p-TGF-ß1 axis may play a powerful regulatory role in HA metabolism and OA progression. Thus, these findings will provide new perspectives for studies on OA pathogenesis, and circHYBID may serve as a potential target for OA therapy.


Subject(s)
Chondrocytes/metabolism , Gene Expression Regulation , Hyaluronic Acid/metabolism , RNA Interference , RNA, Circular/genetics , Transforming Growth Factor beta1/genetics , Biomarkers , Cells, Cultured , Disease Susceptibility , Extracellular Matrix/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunohistochemistry , MicroRNAs/genetics , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Proteoglycans/metabolism , Transforming Growth Factor beta1/metabolism
2.
Asian J Androl ; 23(3): 266-272, 2021.
Article in English | MEDLINE | ID: mdl-33243958

ABSTRACT

The inhibition of 5-α reductase type 2 (SRD5A2) by finasteride is commonly used for the management of urinary obstruction resulting from benign prostatic enlargement (BPE). Certain BPE patients showing no SRD5A2 protein expression are resistant to finasteride therapy. Our previous work showed that methylated cytosine-phosphate-guanine (CpG) islands in the SRD5A2 gene might account for the absence or reduction of SRD5A2 protein expression. Here, we found that the expression of the SRD5A2 protein was variable and that weak expression of the SRD5A2 protein (scored 0-100) occurred in 10.0% (4/40) of benign adult prostates. We showed that the expression of SRD5A2 was negatively correlated with DNA methyltransferase 1 (DNMT1) expression. In vitro SRD5A2-negative BPH-1 cells were resistant to finasteride treatment, and SRD5A2 was re-expressed in BPH-1 cells when SRD5A2 was demethylated by 5-Aza-2'-deoxycytidine (5-Aza-CdR) or N-phthalyl-L-tryptophan (RG108). Furthermore, we determined the exact methylation ratios of CpG dinucleotides in a CpG island of SRD5A2 through MassArray quantitative methylation analysis. Ten methylated CpG dinucleotides, including four CpG dinucleotides in the promoter and six CpG dinucleotides in the first exon, were found in a CpG island located from -400 bp to +600 bp in SRD5A2, which might lead to the silencing of SRD5A2 and the absence or reduction of SRD5A2 protein expression. Finasteride cannot exert a therapeutic effect on patients lacking SRD5A2, which may partially account for the resistance to finasteride observed in certain BPE patients.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/analysis , Finasteride/antagonists & inhibitors , Membrane Proteins/analysis , Prostatic Hyperplasia/drug therapy , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/blood , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Drug Resistance/drug effects , Finasteride/therapeutic use , Humans , Male , Membrane Proteins/blood , Membrane Proteins/genetics , Methylation/drug effects , Prostatic Hyperplasia/physiopathology
3.
J Agric Food Chem ; 66(34): 8976-8982, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30095908

ABSTRACT

Five new resorcylic acid lactones (RALs) hispidulactones A-E (1, 4, 5, 8, and 9), a new natural product (2), and four known ones (3, 6, 7, and 10) with different ring systems were isolated from the desert plant Chaetosphaeronema hispidulum. [corrected]. The new compounds were characterized by NMR data, CD spectra, and X-ray experiment. The new natural product (2) displayed strongly biological effects on the seedlings growth of Arabidopsis thaliana, Digitaria sanguinalis, and Echinochloa crusgalli with a dose-dependent relationship. Compounds 1, 2, and 6 were also tested cytotoxic activities against three cancer cell lines HCT116, Hela, and MCF7 and only did the new natural product (2) display biological activities with IC50 values at 54.86 ± 1.52, 4. 90 ± 0.02, and 20.04 ± 4.00 µM, respectively, whereas the IC50 values of the positive control cis-platinum were 11.36 ± 0.42, 3.54 ± 0.12, and 14.32 ± 1.01 µM, respectively.


Subject(s)
Ascomycota/chemistry , Endophytes/chemistry , Lactones/chemistry , Lactones/pharmacology , Arabidopsis/growth & development , Arabidopsis/microbiology , Cell Survival/drug effects , Digitaria/growth & development , Digitaria/microbiology , Echinochloa/growth & development , Echinochloa/microbiology , HCT116 Cells , HeLa Cells , Humans , Lactones/isolation & purification , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL