Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37786680

ABSTRACT

Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights: Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.

3.
Breast Cancer Res ; 25(1): 10, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36703228

ABSTRACT

Necroptosis is a form of regulated necrosis and is executed by MLKL when MLKL is engaged in triggering the rupture of cell plasma membrane. MLKL activation also leads to the protease, ADAMs-mediated ectodomain shedding of cell surface proteins of necroptotic cells. Tumor necroptosis often happens in advanced solid tumors, and blocking necroptosis by MLKL deletion in breast cancer dramatically reduces tumor metastasis. It has been suggested that tumor necroptosis affects tumor progression through modulating the tumor microenvironment. However, the exact mechanism by which tumor necroptosis promotes tumor metastasis remains elusive. Here, we report that the ectodomain shedding of cell surface proteins of necroptotic cells is critical for the promoting effect of tumor necroptosis in tumor metastasis through inhibiting the anti-tumor activity of T cells. We found that blocking tumor necroptosis by MLKL deletion led to the dramatic reduction of tumor metastasis and significantly elevated anti-tumor activity of tumor-infiltrating and peripheral blood T cells. Importantly, the increased anti-tumor activity of T cells is a key cause for the reduced metastasis as the depletion of CD8+ T cells completely restored the level of metastasis in the Mlkl KO mice. Interestingly, the levels of some soluble cell surface proteins including sE-cadherin that are known to promote metastasis are also dramatically reduced in MLKL null tumors/mice. Administration of ADAMs pan inhibitor reduces the levels of soluble cell surface proteins in WT tumors/mice and leads to the dramatic decrease in metastasis. Finally, we showed the sE-cadherin/KLRG1 inhibitory receptor is the major pathway for necroptosis-mediated suppression of the anti-tumor activity of T cells and the promotion of metastasis. Hence, our study reveals a novel mechanism of tumor necroptosis-mediated promotion of metastasis and suggests that tumor necroptosis and necroptosis-activated ADAMs are potential targets for controlling metastasis.


Subject(s)
Breast Neoplasms , Membrane Proteins , Necroptosis , Neoplasm Metastasis , Animals , Mice , Cadherins , Membrane Proteins/metabolism , Mice, Knockout , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology , Tumor Microenvironment , Breast Neoplasms/pathology
4.
J Natl Cancer Cent ; 2(4): 291-297, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36532841

ABSTRACT

Necroptosis is currently attracting the attention of the scientific community for its broad implications in inflammatory diseases and cancer. However, detecting ongoing necroptosis in vivo under both experimental and clinical disease conditions remains challenging. The technical barrier lies in four aspects, namely tissue sampling, real-time in vivo monitoring, specific markers, and distinction between different types of cell death. In this review, we presented the latest methodological advances for in vivo necroptosis identification. The advances highlighted the multi-parameter flow cytometry, sA5-YFP tool, radiolabeled Annexin V/Duramycin, Gallium-68-labeled IRDye800CW contrast agent, and SMART platform in vivo. We also discussed the up-to-date research models in studying necroptosis, particularly the mice models for manipulating and monitoring necroptosis. Based on these recent advances, this review aims to provide some advice on current necroptosis techniques and approaches.

5.
J Craniofac Surg ; 33(6): 1684-1689, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36054885

ABSTRACT

ABSTRACT: Maxillary skeletal expansion (MSE) provides a new nonsurgical method for the treatment of patients with insufficient maxillary arch expansion width. In this study the aerodynamic changes of the upper airway after MSE in adult patients were explored based on three-dimensional reconstruction technology of cone-beam computed tomographic data and the numerical simulation technology of computational fluid dynamics. An upper airway experimental model was then created based on three-dimensional printing technology and tested in vitro to verify the reliability of the numerical simulation method. The comparison between numerical simulation and experimental results shows that the 2 results are in good agreement. The results of numerical simulation showed that the cross-sectional area of the upper airway was increased after MSE, the pressure and velocity of the upper airway were reduced, and airway resistance was also reduced during exhalation and inhalation. This study shows that MSE can effectively improve the airway dynamics of patients.


Subject(s)
Palatal Expansion Technique , Pharynx , Adult , Cone-Beam Computed Tomography/methods , Humans , Maxilla/diagnostic imaging , Nose , Pharynx/diagnostic imaging , Reproducibility of Results
6.
STAR Protoc ; 3(3): 101457, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35719728

ABSTRACT

Necroptosis occurs predominantly in the center of late-stage tumors and necroptotic cells are dispersed and difficult to be detected by Western blotting of key markers without enrichment by microdissection. To overcome these obstacles, this protocol provides a detailed immunohistochemistry-oriented approach including the steps of tumor isolation from mouse mammary tumor models, necrotic region identification by H&E staining, and necroptosis detection through examining mixed lineage kinase domain-like protein (MLKL) phosphorylation. This protocol could be applied to other types of solid tumors. For complete details on the use and execution of this protocol, please refer to Baik et al. (2021).


Subject(s)
Mammary Neoplasms, Animal , Necroptosis , Animals , Mice , Necrosis/pathology , Phosphorylation , Protein Kinases/metabolism , Transcription Factors/metabolism
7.
Trends Cancer ; 8(1): 21-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34627742

ABSTRACT

Necroptosis, a form of programmed necrotic cell death, is a gatekeeper of host defense against certain pathogen invasions. The deregulation of necroptosis is also a key factor of many inflammatory diseases. Recent studies have revealed an important role of necroptosis in tumorigenesis and metastasis and imply the potential of targeting necroptosis as a novel cancer therapy. While its molecular mechanism has been well studied, details of the regulation and function of necroptosis of tumor cells in tumorigenesis and metastasis only began to emerge recently, and we discuss these herein.


Subject(s)
Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Apoptosis/genetics , Humans , Necroptosis/genetics , Necrosis , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
8.
Nat Commun ; 12(1): 2666, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976222

ABSTRACT

Tumor necrosis happens commonly in advanced solid tumors. We reported that necroptosis plays a major role in tumor necrosis. Although several key necroptosis regulators including receptor interacting protein kinase 1 (RIPK1) have been identified, the regulation of tumor necroptosis during tumor development remains elusive. Here, we report that Z-DNA-binding protein 1 (ZBP1), not RIPK1, mediates tumor necroptosis during tumor development in preclinical cancer models. We found that ZBP1 expression is dramatically elevated in necrotic tumors. Importantly, ZBP1, not RIPK1, deletion blocks tumor necroptosis during tumor development and inhibits metastasis. We showed that glucose deprivation triggers ZBP1-depedent necroptosis in tumor cells. Glucose deprivation causes mitochondrial DNA (mtDNA) release to the cytoplasm and the binding of mtDNA to ZBP1 to activate MLKL in a BCL-2 family protein, NOXA-dependent manner. Therefore, our study reveals ZBP1 as the key regulator of tumor necroptosis and provides a potential drug target for controlling tumor metastasis.


Subject(s)
Breast Neoplasms/genetics , Necroptosis/genetics , RNA-Binding Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , HEK293 Cells , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , RNA-Binding Proteins/metabolism , RNAi Therapeutics/methods , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays/methods
9.
J Biomech ; 121: 110383, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33848827

ABSTRACT

Obstructive sleep apnea syndrome (OSAS) is a common disorder with recurrent pharyngeal airway collapse and sleep disruption. Recently, great progress has been made in investigating the physical mechanism of OSAS development and treatment using computational fluid dynamics (CFD). However, previous studies always neglected the oral cavity artificially in the patient's upper airway CFD model, but did not give any specific explanation. The oral cavity effect on the OSAS upper airway flow is still a matter of unclear. This paper reconstructed the patient-specific upper airway models based on the cone beam computed tomography images of ten children subjects (seven boys and three girls) and used CFD to simulate both the steady and unsteady expiration and inspiration states in the upper airway model with or without the oral cavity. A series of pressure measurement experiments based on the in vitro 1:1 scaled airway model were performed to validate the reliability of the present CFD methods. Finally, the CFD results indicate that the open oral cavity is almost a region of flow stasis with constant pressure, and both the upper airway aerodynamics with and without the oral cavity have the similar trends, with the maximum average relative difference less than 6%. The present study shows that the open oral cavity causes very little impacts on the upper airway flow of the children patients with OSAS using the nasal respiration only, and confirms the reasonability of ignoring the oral cavity for CFD simulation.


Subject(s)
Hydrodynamics , Sleep Apnea, Obstructive , Child , Female , Humans , Male , Mouth , Pharynx/diagnostic imaging , Reproducibility of Results
10.
Methods Mol Biol ; 2248: 73-80, 2021.
Article in English | MEDLINE | ID: mdl-33185868

ABSTRACT

Tumor necrosis factor (TNF) plays a key role in inflammatory responses and in various cellular events such as apoptosis and necroptosis. The interaction of TNF with its receptor, TNFR1, drives the initiation of complex molecular pathways leading to inflammation and cell death. RARγ is released from the nucleus to orchestrate the formation of the cytosolic death complexes, and it is cytosolic RARγ that plays a pivotal role in switching TNF-induced inflammatory responses to RIPK1-initiated cell death. Thus, RARγ provides a checkpoint for the transition from inflammatory signaling to death machinery of RIPK1-initiated cell death in response to TNF. Here, we use techniques to identify RARγ as a downstream mediator of TNFR1 signaling complex. We use confocal imaging to show the localization of RARγ upon activation of cell death. Immunoprecipitation of RARγ identified the interacting proteins.


Subject(s)
Apoptosis , Inflammation/etiology , Inflammation/metabolism , Signal Transduction , Tumor Necrosis Factors/metabolism , Animals , Apoptosis/genetics , Biomarkers , Blotting, Western , Cell Line , Disease Susceptibility , Humans , Immunoprecipitation , Inflammation/pathology , Tumor Necrosis Factors/genetics
11.
Cancers (Basel) ; 12(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066043

ABSTRACT

New approaches to target MYC include the stabilization of a guanine-rich, G-quadruplex (G4) tertiary DNA structure in the NHE III region of its promoter. Recent screening of a small molecule microarray platform identified a benzofuran, D089, that can stabilize the MYC G4 and inhibit its transcription. D089 induced both dose- and time-dependent multiple myeloma cell death mediated by endoplasmic reticulum induced stress. Unexpectedly, we uncovered two mechanisms of cell death: cellular senescence, as evidenced by increased levels of p16, p21 and γ-H2AX proteins and a caspase 3-independent mechanism consistent with pyroptosis. Cells treated with D089 exhibited high levels of the cleaved form of initiator caspase 8; but failed to show cleavage of executioner caspase 3, a classical apoptotic marker. Cotreatment with the a pan-caspase inhibitor Q-VD-OPh did not affect the cytotoxic effect of D089. In contrast, cleaved caspase 1, an inflammatory caspase downstream of caspases 8/9, was increased by D089 treatment. Cells treated with D089 in addition to either a caspase 1 inhibitor or siRNA-caspase 1 showed increased IC50 values, indicating a contribution of cleaved caspase 1 to cell death. Downstream effects of caspase 1 activation after drug treatment included increases in IL1B, gasdermin D cleavage, and HMGB1 translocation from the nucleus to the cytoplasm. Drug treated cells underwent a 'ballooning' morphology characteristic of pyroptosis, rather than 'blebbing' typically associated with apoptosis. ASC specks colocalized with NLRP3 in proximity ligation assays after drug treatment, indicating inflammasome activation and further confirming pyroptosis as a contributor to cell death. Thus, the small molecule MYC G4 stabilizer, D089, provides a new tool compound for studying pyroptosis. These studies suggest that inducing both tumor senescence and pyroptosis may have therapeutic potential for cancer treatment.

12.
Transl Oncol ; 13(1): 32-41, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31760267

ABSTRACT

BACKGROUND: Escaping cell death pathways is an important event during carcinogenesis. We previously identified anti-TNFα-induced apoptosis (ATIA, also known as vasorin) as an antiapoptotic factor that suppresses reactive oxygen species (ROS) production. However, the role of vasorin in lung carcinogenesis has not been investigated. METHODS: Vasorin expression was examined in human lung cancer tissues with immunohistochemistry and database analysis. Genetic and pharmacological approaches were used to manipulate protein expression and autophagy activity in human bronchial epithelial cells (HBECs). ROS generation was measured with fluorescent indicator, apoptosis with release of lactate dehydrogenase, and cell transformation was assessed with colony formation in soft agar. RESULTS: Vasorin expression was increased in human lung cancer tissues and cell lines, which was inversely associated with lung cancer patient survival. Cigarette smoke extract (CSE) and benzo[a]pyrene diol epoxide (BPDE)-induced vasorin expression in HBECs. Vasorin knockdown in HBECs significantly suppressed CSE-induced transformation in association with enhanced ROS accumulation and autophagy. Scavenging ROS attenuated autophagy and cytotoxicity in vasorin knockdown cells, suggesting that vasorin potentiates transformation by impeding ROS-mediated CSE cytotoxicity and improving survival of the premalignant cells. Suppression of autophagy effectively inhibited CSE-induced apoptosis, suggesting that autophagy was pro-apoptotic in CSE-treated cells. Importantly, blocking autophagy strongly potentiated CSE-induced transformation. CONCLUSION: These results suggest that vasorin is a potential lung cancer-promoting factor that facilitates cigarette smoke-induced bronchial epithelial cell transformation by suppressing autophagy-mediated apoptosis, which could be exploited for lung cancer prevention.

13.
iScience ; 17: 74-86, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31255985

ABSTRACT

DNA-damaging compounds, commonly used as chemotherapeutic drugs, are known to trigger cells to undergo programmed cell death such as apoptosis and necroptosis. However, the molecular mechanism of DNA damage-induced cell death is not fully understood. Here, we report that RARγ has a critical role in DNA damage-induced programmed cell death, specifically in necroptosis. The loss of RARγ abolishes the necroptosis induced by DNA damage. In addition, cells that lack RARγ are less susceptible to extrinsic apoptotic pathway activated by DNA-damaging agents whereas the intrinsic apoptotic pathway is not affected. We demonstrate that RARγ is essential for the formation of RIPK1/RIPK3 death complex, known as Ripoptosome, in response to DNA damage. Furthermore, we show that RARγ plays a role in skin cancer development by using RARγ1 knockout mice and human squamous cell carcinoma biopsies. Hence, our study reveals that RARγ is a critical component of DNA damage-induced cell death.

14.
Br J Pharmacol ; 176(12): 2095-2108, 2019 06.
Article in English | MEDLINE | ID: mdl-30825190

ABSTRACT

BACKGROUND AND PURPOSE: Necroptosis is a form of programmed, caspase-independent, cell death, mediated by receptor-interacting protein kinases, RIPK1 and RIPK3, and the mixed lineage kinase domain-like (MLKL). Necroptosis contributes to the pathophysiology of various inflammatory, infectious, and degenerative diseases. Thus, identification of low MW inhibitors for necroptosis has broad therapeutic relevance. Here, we identified that the pan-Raf inhibitor TAK-632 was also an inhibitor of necroptosis. We have further generated a more selective, highly potent analogue of TAK-632 by targeting RIPK1 and RIPK3. EXPERIMENTAL APPROACH: Cell viability was measured by MTT, propidium staining, or CellTiter-Glo luminescent assays. Effects of TAK-632 on necroptosis signalling pathways were investigated by western blotting, immunoprecipitation, and in vitro kinase assays. Downstream targets of TAK-632 were identified by a drug affinity responsive target stability assay and a pull-down assay with biotinylated TAK-632. A mouse model of TNF-α-induced systemic inflammatory response syndrome (SIRS) was further used to explore the role of TAK-632 in protecting against necroptosis-associated inflammation in vivo. KEY RESULTS: TAK-632 protected against necroptosis in human and mouse cells but did not protect cells from apoptosis. TAK-632 directly bound with RIPK1 and RIPK3 to inhibit kinase activities of both enzymes. In vivo, TAK-632 alleviated TNF-induced SIRS. Furthermore, we performed a structure-activity relationship analysis of TAK-632 analogues and generated SZM594, a highly potent inhibitor of RIPK1/3. CONCLUSIONS AND IMPLICATIONS: TAK-632 is an inhibitor of necroptosis and represents a new lead compound in the development of highly potent inhibitors of RIPK1 and RIPK3.


Subject(s)
Benzothiazoles/pharmacology , Necroptosis/drug effects , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , HEK293 Cells , HT29 Cells , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Nitriles/administration & dosage , Nitriles/chemistry , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
15.
Cell ; 176(6): 1447-1460.e14, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799039

ABSTRACT

The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.


Subject(s)
DNA/immunology , Nucleotidyltransferases/metabolism , Self Tolerance/immunology , Acetylation , Amino Acid Sequence , Animals , Aspirin/pharmacology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/metabolism , Autoimmunity , Cell Line , DNA/genetics , DNA/metabolism , Disease Models, Animal , Exodeoxyribonucleases/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/immunology , Nervous System Malformations/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , THP-1 Cells
16.
Nat Commun ; 10(1): 705, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741936

ABSTRACT

TRADD is an adaptor for TNFR1-induced apoptosis and NFκB activation. However, TRADD-deficient mice undergo normal development and contain normal lymphoid populations, which contrasts with an embryonic defect in mice lacking FADD, the shared adaptor mediating apoptosis. Recent studies indicate FADD suppresses embryonic necroptosis mediated by RIPK1. TRADD was suggested to also mediate necroptosis. Here we report that targeting TRADD fails to rescue Fadd-/- embryos from necroptosis, and ablation of TRADD rescues Ripk1-/- mice from perinatal lethality when RIPK3-mediated necroptosis is disabled. The resulting Ripk1-/-Ripk3-/-Tradd-/- mice survive until early adulthood, but die thereafter. A single allele of Tradd is optimal for survival of Ripk1-/-Ripk3-/-Tradd+/- mice. We show that TRADD plays a more dominating role in NFκB-signaling than RIPK1. While RIPK1 protects thymocytes from TNFα-induced apoptosis, TRADD promotes this process. The data demonstrate that TRADD is critical in perinatal and adult mice lacking RIPK1 and RIPK3, which has not been appreciated in prior studies.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Death Domain Protein/metabolism , Animals , Apoptosis/drug effects , Caspase 8/genetics , Caspase 8/metabolism , Cell Death , Cell Proliferation/drug effects , Fas-Associated Death Domain Protein/metabolism , Fibroblasts , Gene Deletion , Gene Expression Regulation , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology , Signal Transduction , Survival Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , TNF Receptor-Associated Death Domain Protein/genetics , TNF Receptor-Associated Death Domain Protein/pharmacology , Thymocytes/drug effects , Transcriptome , Tumor Necrosis Factor-alpha
17.
Sci Rep ; 9(1): 1759, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741975

ABSTRACT

The inflammatory response, modulated both by tissue resident macrophages and recruited monocytes from peripheral blood, plays a critical role in human diseases such as cancer and neurodegenerative disorders. Here, we sought a model to interrogate human immune behavior in vivo. We determined that primary human monocytes and macrophages survive in zebrafish for up to two weeks. Flow cytometry revealed that human monocytes cultured at the physiological temperature of the zebrafish survive and differentiate comparable to cohorts cultured at human physiological temperature. Moreover, key genes that encode for proteins that play a role in tissue remodeling were also expressed. Human cells migrated within multiple tissues at speeds comparable to zebrafish macrophages. Analysis of gene expression of in vivo educated human macrophages confirmed expression of activated macrophage phenotypes. Here, human cells adopted phenotypes relevant to cancer progression, suggesting that we can define the real time immune modulation of human tumor cells during the establishment of a metastatic lesion in zebrafish.


Subject(s)
Genotype , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Animals , Biomarkers , Cell Survival/genetics , Cell Survival/immunology , Humans , Phenotype , Zebrafish
18.
Cell Stress ; 4(1): 1-8, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31922095

ABSTRACT

Necroptosis, known as programmed necrosis, is a form of caspase-independent, finely regulated cell death with necrotic morphology. Tumor necrosis, foci of necrotic cell death, occurs in advanced solid tumors and is often associated with poor prognosis of cancer patients. While it is well documented that apoptosis plays a key role in tumor regression and the inactivation of apoptosis is pivotal to tumor development, the role of necroptosis in tumorigenesis is still not fully understood as recent studies have reported both tumor-promoting and tumor-suppressing effects of necroptosis. In this short review, we will discuss some recent studies about the role of necroptosis in tumorigenesis and speculate the implications of these findings in future research and potential novel cancer therapy targeting necroptosis.

19.
Nat Immunol ; 20(1): 18-28, 2019 01.
Article in English | MEDLINE | ID: mdl-30510222

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a key sensor responsible for cytosolic DNA detection. Here we report that GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is critical for DNA sensing and efficient activation of cGAS. G3BP1 enhanced DNA binding of cGAS by promoting the formation of large cGAS complexes. G3BP1 deficiency led to inefficient DNA binding by cGAS and inhibited cGAS-dependent interferon (IFN) production. The G3BP1 inhibitor epigallocatechin gallate (EGCG) disrupted existing G3BP1-cGAS complexes and inhibited DNA-triggered cGAS activation, thereby blocking DNA-induced IFN production both in vivo and in vitro. EGCG administration blunted self DNA-induced autoinflammatory responses in an Aicardi-Goutières syndrome (AGS) mouse model and reduced IFN-stimulated gene expression in cells from a patient with AGS. Thus, our study reveals that G3BP1 physically interacts with and primes cGAS for efficient activation. Furthermore, EGCG-mediated inhibition of G3BP1 provides a potential treatment for cGAS-related autoimmune diseases.


Subject(s)
Autoimmune Diseases of the Nervous System/metabolism , DNA Helicases/metabolism , Multiprotein Complexes/metabolism , Nervous System Malformations/metabolism , Nucleotidyltransferases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Animals , Autoantigens/immunology , Autoantigens/metabolism , Autoimmune Diseases of the Nervous System/drug therapy , Autoimmune Diseases of the Nervous System/genetics , Catechin/analogs & derivatives , Catechin/therapeutic use , Clustered Regularly Interspaced Short Palindromic Repeats , Cytosol/immunology , Cytosol/metabolism , DNA/immunology , DNA/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/genetics , Disease Models, Animal , Exodeoxyribonucleases/genetics , HEK293 Cells , HeLa Cells , Humans , Interferons/metabolism , Mice , Mice, Knockout , Nervous System Malformations/drug therapy , Nervous System Malformations/genetics , Neuroprotective Agents/therapeutic use , Phosphoproteins/genetics , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/genetics , Protein Binding , RNA Helicases/antagonists & inhibitors , RNA Helicases/genetics , RNA Recognition Motif Proteins/antagonists & inhibitors , RNA Recognition Motif Proteins/genetics
20.
Methods Mol Biol ; 1857: 85-92, 2018.
Article in English | MEDLINE | ID: mdl-30136232

ABSTRACT

Programmed necrosis, also known as necroptosis, is a form of regulated necrotic cell death that is mediated by receptor-interacting protein kinases RIP1 (or RIPK1), RIP3 (or RIPK3), and the mixed lineage kinase domain-like protein, MLKL. Following the induction of programmed necrosis, MLKL is phosphorylated by RIP3 and oligomerizes and then the protein translocates to cell plasma membrane in order to execute programmed necrosis. Here, we describe a detailed protocol to detect MLKL oligomerization in necroptotic cells by Western blotting analysis under nonreducing condition. Therefore, we established the method to detect the activation of programmed necrotic pathway.


Subject(s)
Embryo, Mammalian/pathology , Fibroblasts/pathology , Necrosis , Protein Kinases/metabolism , Protein Multimerization , Animals , Cells, Cultured , Embryo, Mammalian/drug effects , Fibroblasts/drug effects , Humans , Jurkat Cells , Mice , Protein Kinases/chemistry , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...