Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Clin Cancer Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848042

ABSTRACT

PURPOSE: This study aimed to elucidate the impact of brain tumors on cerebral edema and glymphatic drainage, leveraging advanced imaging techniques to explore the relationship between tumor characteristics, glymphatic function, and aquaporin 4 (AQP4) expression. EXPERIMENTAL DESIGN: In a prospective cohort from March 2022 to April 2023, patients with glioblastoma, brain metastases, and aggressive meningiomas, alongside age- and sex-matched healthy controls, underwent 3.0T MRI, including Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index and Multiparametric MRI (MTP) for quantitative brain mapping. Tumor and peri-tumor tissues were analyzed for AQP4 expression via immunofluorescence. Correlations between imaging parameters, glymphatic function (DTI-ALPS index), and AQP4 expression were statistically assessed. RESULTS: Among 84 patients (mean age: 55 ± 12 years; 38 males) and 59 controls (mean age: 54 ± 8 years; 23 males), brain tumor patients exhibited significantly reduced glymphatic function (DTI-ALPS index: 2.315 vs. 2.879; p = 0.001) and increased cerebrospinal fluid (CSF) volume (201.376 cm³ vs. 115.957 cm³; p = 0.001). A negative correlation was observed between tumor volume and the DTI-ALPS index (r: -0.715, p < 0.001), while AQP4 expression correlated positively with peritumoral brain edema (PTBE) volume (r: 0.989; p < 0.001) and negatively with PD in PTBE areas (ρ: -0.506; p < 0.001). CONCLUSIONS: Our findings highlight the interplay between tumor-induced compression, glymphatic dysfunction, and altered fluid dynamics, showing the utility of DTI-ALPS and MTP in understanding the pathophysiology of tumor-related cerebral edema. These insights provide a radiological foundation for further neuro-oncological investigations into the glymphatic system.

2.
Opt Express ; 32(7): 11873-11885, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571025

ABSTRACT

In recent years, the rotational Doppler effect (RDE) has been widely used in rotational motion measurement. However, the performance of existing detection systems based on the RDE are generally limited by the drastic reduction of signal-to-noise ratio (SNR) due to the influence of atmospheric turbulence, partial obscuration of the vortex beam (VB) during propagation, and misalignment between the optical axis of VB and the rotational axis of the object, which poses a challenge for practical applications. In this paper, we proposed a coherent detection method of the RDE measurement based on triple Fourier transform. First, the weak RDE signal in backscattered light is amplified by using the balanced homodyne detection method, and the amplified signal still retains the same characteristic of severe broadening in the frequency domain as the original signal. Furthermore, we proposed the triple Fourier transform to extract the broadened RDE frequency shift signal after the coherent amplification. The proposed method significantly improves the SNR of RDE measurement and facilitates the accurate extraction of rotational speed, which helps to further improve the RDE detection range and promote its practical application.

3.
IEEE Trans Med Imaging ; PP2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587958

ABSTRACT

In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.

4.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38620069

ABSTRACT

Exciton-polariton systems composed of a light-matter quasi-particle with a light effective mass easily realize Bose-Einstein condensation. In this work, we constructed an annular trap in a halide perovskite semiconductor microcavity and observed the spontaneous formation of symmetrical petal-shaped exciton-polariton condensation in the annular trap at room temperature. In our study, we found that the number of petals of the petal-shaped exciton-polariton condensates, which is decided by the orbital angular momentum, is dependent on the light intensity distribution. Therefore, the selective excitation of perovskite microcavity exciton-polariton condensates under all-optical control can be realized by adjusting the light intensity distribution. This could pave the way to room-temperature topological devices, optical cryptographical devices, and new quantum gyroscopes in the exciton-polariton system.

5.
Med Phys ; 51(3): 2187-2199, 2024 Mar.
Article in Italian | MEDLINE | ID: mdl-38319676

ABSTRACT

BACKGROUND: Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning-based auto-segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning-based auto-segmentation approaches face two challenges in clinical practice: generalizability and human-AI interaction. A generalizable and promptable auto-segmentation model, which segments OARs of multiple disease sites simultaneously and supports on-the-fly human-AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. PURPOSE: Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next-generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. METHODS: Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's 'segment anything' mode, and automatic segmentation using SAM's 'box prompt' mode that implements manual interaction via live prompts during segmentation. RESULTS: Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. CONCLUSIONS: Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box-prompt method enables the users to augment auto-segmentation interactively and dynamically, leading to patient-specific auto-segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto-segmentation model in radiotherapy.


Subject(s)
Deep Learning , Radiation Oncology , Male , Humans , Artificial Intelligence , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Organs at Risk , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
6.
J Neural Eng ; 21(2)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38407988

ABSTRACT

Objective: Using functional magnetic resonance imaging (fMRI) and deep learning to discover the spatial pattern of brain function, or functional brain networks (FBNs) has been attracted many reseachers. Most existing works focus on static FBNs or dynamic functional connectivity among fixed spatial network nodes, but ignore the potential dynamic/time-varying characteristics of the spatial networks themselves. And most of works based on the assumption of linearity and independence, that oversimplify the relationship between blood-oxygen level dependence signal changes and the heterogeneity of neuronal activity within voxels.Approach: To overcome these problems, we proposed a novel spatial-wise attention (SA) based method called Spatial and Channel-wise Attention Autoencoder (SCAAE) to discover the dynamic FBNs without the assumptions of linearity or independence. The core idea of SCAAE is to apply the SA to generate FBNs directly, relying solely on the spatial information present in fMRI volumes. Specifically, we trained the SCAAE in a self-supervised manner, using the autoencoder to guide the SA to focus on the activation regions. Experimental results show that the SA can generate multiple meaningful FBNs at each fMRI time point, which spatial similarity are close to the FBNs derived by known classical methods, such as independent component analysis.Main results: To validate the generalization of the method, we evaluate the approach on HCP-rest, HCP-task and ADHD-200 dataset. The results demonstrate that SA mechanism can be used to discover time-varying FBNs, and the identified dynamic FBNs over time clearly show the process of time-varying spatial patterns fading in and out.Significance: Thus we provide a novel method to understand human brain better. Code is available athttps://github.com/WhatAboutMyStar/SCAAE.


Subject(s)
Brain Mapping , Nervous System Physiological Phenomena , Humans , Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging/methods , Attention
7.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2252-2266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37930908

ABSTRACT

Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.

8.
Med Phys ; 51(2): 1484-1498, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37748037

ABSTRACT

BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose prediction methods specifically designed for proton therapy. Successful dose prediction method for proton therapy should account for more challenging dose prediction problems in pencil beam scanning proton therapy (PBSPT) due to its sensitivity to heterogeneities. PURPOSE: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS: PBSPT plans of 103 prostate cancer patients (93 for training and the other 10 for independent testing) and 83 lung cancer patients (73 for training and the other 10 for independent testing) previously treated at our institution were included in the study, each with computed tomography scans (CTs), structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine (considered as the ground truth in the model training and testing). For the ablation study, we designed three experiments corresponding to the following three methods: (1) Experiment 1, the conventional region of interest (ROI) (composed of targets and organs-at-risk [OARs]) method. (2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. (3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates with a criterion of 3%/3 mm/10%, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS: Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices (for lung cancer, CTV D98 absolute deviation: 0.74 ± 0.18 vs. 0.57 ± 0.21 vs. 0.54 ± 0.15 Gy[RBE], ROI vs. beam mask vs. sliding window methods, respectively). For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method improved the passing rates in these regions and the sliding window method further improved them (for prostate cancer, targets: 96.93% ± 0.53% vs. 98.88% ± 0.49% vs. 99.97% ± 0.07%, BODY: 86.88% ± 0.74% vs. 93.21% ± 0.56% vs. 95.17% ± 0.59%). A similar trend was also observed for the dice coefficients. This trend was especially remarkable for relatively low prescription isodose lines (for lung cancer, 10% isodose line dice: 0.871 ± 0.027 vs. 0.911 ± 0.023 vs. 0.927 ± 0.017). The dose predictions for all the testing cases were completed within 0.25 s. CONCLUSIONS: An accurate and efficient deep learning-augmented proton dose prediction framework has been developed for PBSPT, which can predict accurate dose distributions not only inside but also outside ROI efficiently. The framework can potentially further reduce the initial planning and adaptive replanning workload in PBSPT.


Subject(s)
Deep Learning , Lung Neoplasms , Prostatic Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Dosage , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Prostatic Neoplasms/radiotherapy
9.
Opt Express ; 31(24): 39356-39368, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041259

ABSTRACT

Vortex beams (VBs) with orbital angular momentum have shown great potential in the detection of transverse rotational motion of spatial targets which is undetectable in the classical radar scheme. However, most of the reported rotational Doppler measurements based on VBs can only be realized under ideal experimental conditions. The long-range detection is still a challenge. The detection distance based on rotational Doppler effect (RDE) is mainly limited by the scattered signal's signal-to-noise ratio (SNR). In this work, we investigated the influence of multi-ring vortex beams (MVBs) on the rotational Doppler frequency spectrum of scattered light from an object based on RDE and proposed a method of SNR enhancement of RDE signal. Firstly, different types of MVBs composed of a set of single-ring VBs with the same topological charge and different radii are designed, including multi-ring Laguerre Gaussian beam (MLGB), multi-ring perfect vortex beams (MPVB), and high-order Laguerre Gaussian beam (HLGB). Then, the influence of the number of rings and radial radius interval on the intensity profiles of MVBs and rotational Doppler frequency spectra under aligned and misaligned conditions is studied in detail. And the reasons why different types of MVBs lead to different SNR enhancement effectiveness with the increase of rings are also analyzed theoretically. Finally, proof-of-concept experiments were conducted to verify the effectiveness of the SNR enhancement method for RDE signals. The results showed that the amplitudes of the Doppler spectra generated by the MLGB and MPVB are improved substantially with the increase of rings, but the enhancement effect caused by the former is superior to the latter. The gain of HLGB on the RDE signal is the lowest. This study provides a useful reference for the optimization of rotational Doppler detection systems and may be of great application value in telemetry, long-range communication and optical imaging.

10.
Opt Express ; 31(24): 39995-40004, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041310

ABSTRACT

The rotational Doppler effect of the vortex beam is a recently emerged promising application of the optical vortex with orbital angular momentum. In this paper, we combine the method of the micro-Doppler effect of the traditional radar and the rotational Doppler effect of the vortex beam and propose an approach of rotational micro-Doppler effect, realizing the simultaneous measurement of spin and precession. We firstly analyze the rotational micro-Doppler characteristic introduced by precession under the illuminating of vortex beam and calculate the rotational micro-Doppler parameters related to the spin and precession. Then we conduct an experiment of using the vortex beam to detect a spinning object with precession and the rotational micro-Doppler frequency is successfully observed. By extracting the rotational micro-Doppler parameters, the simultaneous and independent measurement of spin and precession is realized. Both the theoretical analysis and experimental results indicate that the rotational micro-Doppler effect is an effective extension of the rotational Doppler effect and is also a feasible application of the vortex beam detection.

11.
JMIR Med Educ ; 9: e48904, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153785

ABSTRACT

BACKGROUND: Large language models, such as ChatGPT, are capable of generating grammatically perfect and human-like text content, and a large number of ChatGPT-generated texts have appeared on the internet. However, medical texts, such as clinical notes and diagnoses, require rigorous validation, and erroneous medical content generated by ChatGPT could potentially lead to disinformation that poses significant harm to health care and the general public. OBJECTIVE: This study is among the first on responsible artificial intelligence-generated content in medicine. We focus on analyzing the differences between medical texts written by human experts and those generated by ChatGPT and designing machine learning workflows to effectively detect and differentiate medical texts generated by ChatGPT. METHODS: We first constructed a suite of data sets containing medical texts written by human experts and generated by ChatGPT. We analyzed the linguistic features of these 2 types of content and uncovered differences in vocabulary, parts-of-speech, dependency, sentiment, perplexity, and other aspects. Finally, we designed and implemented machine learning methods to detect medical text generated by ChatGPT. The data and code used in this paper are published on GitHub. RESULTS: Medical texts written by humans were more concrete, more diverse, and typically contained more useful information, while medical texts generated by ChatGPT paid more attention to fluency and logic and usually expressed general terminologies rather than effective information specific to the context of the problem. A bidirectional encoder representations from transformers-based model effectively detected medical texts generated by ChatGPT, and the F1 score exceeded 95%. CONCLUSIONS: Although text generated by ChatGPT is grammatically perfect and human-like, the linguistic characteristics of generated medical texts were different from those written by human experts. Medical text generated by ChatGPT could be effectively detected by the proposed machine learning algorithms. This study provides a pathway toward trustworthy and accountable use of large language models in medicine.


Subject(s)
Algorithms , Artificial Intelligence , Humans , Disinformation , Electric Power Supplies , Health Facilities
12.
Materials (Basel) ; 16(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38138819

ABSTRACT

Fatigue delamination damage is one of the most important fatigue failure modes for laminated composite structures. However, there are still many challenging problems in the development of the theoretical framework, mathematical/physical models, and numerical simulation of fatigue delamination. What is more, it is essential to establish a systematic classification of these methods and models. This article reviews the experimental phenomena of delamination onset and propagation under fatigue loading. The authors reviewed the commonly used phenomenological models for laminated composite structures. The research methods, general modeling formulas, and development prospects of phenomenological models were presented in detail. Based on the analysis of finite element models (FEMs) for laminated composite structures, several simulation methods for fatigue delamination damage models (FDDMs) were carefully classified. Then, the whole procedure, range of applications, capability assessment, and advantages and limitations of the models, which were based on four types of theoretical frameworks, were also discussed in detail. The theoretical frameworks include the strength theory model (SM), fracture mechanics model (FM), damage mechanics model (DM), and hybrid model (HM). To the best of the authors' knowledge, the FDDM based on the modified Paris law within the framework of hybrid fracture and damage mechanics is the most effective method so far. However, it is difficult for the traditional FDDM to solve the problem of the spatial delamination of complex structures. In addition, the balance between the cost of acquiring the model and the computational efficiency of the model is also critical. Therefore, several potential research directions, such as the extended finite element method (XFEM), isogeometric analysis (IGA), phase-field model (PFM), artificial intelligence algorithm, and higher-order deformation theory (HODT), have been presented in the conclusions. Through validation by investigators, these research directions have the ability to overcome the challenging technical issues in the fatigue delamination prediction of laminated composite structures.

13.
Comput Biol Med ; 165: 107395, 2023 10.
Article in English | MEDLINE | ID: mdl-37669583

ABSTRACT

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging
14.
Opt Express ; 31(16): 25889-25899, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710463

ABSTRACT

The optical vortex (OV) carries unique orbital angular momentum (OAM) and experiences a Doppler frequency shift when backscattered from a spinning object. This rotational Doppler effect (RDE) has provided a solution for the non-contact detection of rotating motion. The reported RDE researches mainly use a single OV that generates frequency shifts proportional to its topological charge and has low robustness to light incidence. Here, we show the distinctive RDE of superimposed optical vortex array (SOVA). We analyze the holistic OAM of SOVA which is represented in terms of a superposition of azimuthal harmonics and displays a unique modal gathering effect. In the experiment of RDE, the frequency shift signals of SOVA show a precise mapping to the OAM modes and the modal gathering effect contributes to enhance the amplitude of signals, which has the potential to enhance robustness against non-coaxial incidence. This finding provides a new aspect of RDE and a pioneered example for introducing various SOVAs into rotation detection.

15.
Front Oncol ; 13: 1219326, 2023.
Article in English | MEDLINE | ID: mdl-37529688

ABSTRACT

Purpose: We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic, radiation oncology physics, which may be more pertinent to scientific and medical communities in addition to being a valuable benchmark of LLMs. Methods: We developed an exam consisting of 100 radiation oncology physics questions based on our expertise. Four LLMs, ChatGPT (GPT-3.5), ChatGPT (GPT-4), Bard (LaMDA), and BLOOMZ, were evaluated against medical physicists and non-experts. The performance of ChatGPT (GPT-4) was further explored by being asked to explain first, then answer. The deductive reasoning capability of ChatGPT (GPT-4) was evaluated using a novel approach (substituting the correct answer with "None of the above choices is the correct answer."). A majority vote analysis was used to approximate how well each group could score when working together. Results: ChatGPT GPT-4 outperformed all other LLMs and medical physicists, on average, with improved accuracy when prompted to explain before answering. ChatGPT (GPT-3.5 and GPT-4) showed a high level of consistency in its answer choices across a number of trials, whether correct or incorrect, a characteristic that was not observed in the human test groups or Bard (LaMDA). In evaluating deductive reasoning ability, ChatGPT (GPT-4) demonstrated surprising accuracy, suggesting the potential presence of an emergent ability. Finally, although ChatGPT (GPT-4) performed well overall, its intrinsic properties did not allow for further improvement when scoring based on a majority vote across trials. In contrast, a team of medical physicists were able to greatly outperform ChatGPT (GPT-4) using a majority vote. Conclusion: This study suggests a great potential for LLMs to work alongside radiation oncology experts as highly knowledgeable assistants.

16.
ArXiv ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37396612

ABSTRACT

PURPOSE: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS: PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine. For the ablation study, we designed three experiments corresponding to the following three methods: 1) Experiment 1, the conventional region of interest (ROI) method. 2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. 3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS: Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices. For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method can improve the passing rates in these regions and the sliding window method further improved them. A similar trend was also observed for the dice coefficients. In fact, this trend was especially remarkable for relatively low prescription isodose lines. The dose predictions for all the testing cases were completed within 0.25s.

17.
Neural Netw ; 165: 1035-1049, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37473638

ABSTRACT

EEG is widely adopted to study the brain and brain computer interface (BCI) for its non-invasiveness and low costs. Specifically EEG can be applied to differentiate brain states, which is important for better understanding the working mechanisms of the brain. Recurrent neural network (RNN)-based learning strategy has been widely utilized to differentiate brain states, because its optimization architectures improve the classification performance for differentiating brain states at the group level. However, present classification performance is still far from satisfactory. We have identified two major focal points for improvements: one is about organizing the input EEG signals, and the other is related to the design of the RNN architecture. To optimize the above-mentioned issues and achieve better brain state classification performance, we propose a novel multi-clip random fragment strategy-based interactive bidirectional recurrent neural network (McRFS-IBiRNN) model in this work. This model has two advantages over previous methods. First, the McRFS component is designed to re-organize the input EEG signals to make them more suitable for the RNN architecture. Second, the IBiRNN component is an innovative design to model the RNN layers with interaction connections to enhance the fusion of bidirectional features. By adopting the proposed model, promising brain states classification performances are obtained. For example, 96.97% and 99.34% of individual and group level four-category classification accuracies are successfully obtained on the EEG motor/imagery dataset, respectively. A 99.01% accuracy can be observed for four-category classification tasks with new subjects not seen before, which demonstrates the generalization of our proposed method. Compared with existing methods, our model outperforms them with superior results. Overall, the proposed McRFS-IBiRNN model demonstrates great superiority in differentiating brain states on EEG signals.


Subject(s)
Algorithms , Brain-Computer Interfaces , Humans , Electroencephalography/methods , Neural Networks, Computer , Brain , Surgical Instruments , Imagination
18.
Opt Lett ; 48(14): 3801-3804, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450754

ABSTRACT

We designed a versatile optical edge detection setup with two cascaded Pancharatnam-Berry lenses (PBLs) placed at the Fourier plane of a 4f system. When the two PBLs are parallel and close to each other, owing to the moiré-like effect, one-dimensional edge detection with adjustable resolution is achieved by introducing a transverse displacement of one PBL. Furthermore, two-dimensional edge detection with adjustable resolution can also be realized by tuning the longitudinal distance between the PBLs, and the transverse displacement is exploited to adjust the edge resolution in specified directions. The proposed scheme is verified by a proof-of-principle experiment in which the resolution-adjustable edges of different targets and cells were clearly observed, showing its flexibility and potential application in image processing and high-contrast microscopy.


Subject(s)
Lens, Crystalline , Lenses , Image Processing, Computer-Assisted , Microscopy
19.
Behav Brain Res ; 452: 114603, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37516208

ABSTRACT

BACKGROUND: It has been recently shown that deep learning models exhibited remarkable performance of representing functional Magnetic Resonance Imaging (fMRI) data for the understanding of brain functional activities. With hierarchical structure, deep learning models can infer hierarchical functional brain networks (FBN) from fMRI. However, the applications of the hierarchical FBNs have been rarely studied. METHODS: In this work, we proposed a hierarchical recurrent variational auto-encoder (HRVAE) to unsupervisedly model the fMRI data. The trained HRVAE encoder can predict hierarchical temporal features from its three hidden layers, and thus can be regarded as a hierarchical feature extractor. Then LASSO (least absolute shrinkage and selection operator) regression was applied to estimate the corresponding hierarchical FBNs. Based on the hierarchical FBNs from each subject, we constructed a novel classification framework for brain disorder identification and test it on the Autism Brain Imaging Data Exchange (ABIDE) dataset, a world-wide multi-site database of autism spectrum disorder (ASD). We analyzed the hierarchy organization of FBNs, and finally used the overlaps of hierarchical FBNs as features to differentiate ASD from typically developing controls (TDC). RESULTS: The experimental results on 871 subjects from ABIDE dataset showed that the HRVAE model can effectively derive hierarchical FBNs including many well-known resting state networks (RSN). Moreover, the classification result improved the state-of-the-art by achieving a very high accuracy of 82.1 %. CONCLUSIONS: This work presents a novel data-driven deep learning method using fMRI data for ASD identification, which could provide valuable reference for clinical diagnosis. The classification results suggest that the interactions of hierarchical FBNs have association with brain disorder, which promotes the understanding of FBN hierarchy and could be applied to other brain disorder analysis.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , Connectome , Deep Learning , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods
20.
Med Image Anal ; 89: 102892, 2023 10.
Article in English | MEDLINE | ID: mdl-37482031

ABSTRACT

Learning an effective and compact representation of human brain function from high-dimensional fMRI data is crucial for studying the brain's functional organization. Traditional representation methods such as independent component analysis (ICA) and sparse dictionary learning (SDL) mainly rely on matrix decomposition which represents the brain function as spatial brain networks and the corresponding temporal patterns. The correspondence of those brain networks across individuals are built by viewing them as one-hot vectors and then performing the matching. However, those one-hot vectors do not encode the regularity and/or variability of different brains very well, and thus are limited in effectively representing the functional brain activities across individuals and among different time points. To address this problem, in this paper, we formulate the human brain functional representation as an embedding problem, and propose a novel embedding framework based on the Transformer model to encode the brain function in a compact, stereotyped and comparable latent space where the brain activities are represented as dense embedding vectors. We evaluate the proposed embedding framework on the publicly available Human Connectome Project (HCP) task fMRI dataset. The experiments on brain state prediction task indicate the effectiveness and generalizability of the learned embedding. We also explore the interpretability of the learned embedding from both spatial and temporal perspective. In general, our approach provides novel insights on representing the regularity and variability of human brain function in a general, comparable, and stereotyped latent space.


Subject(s)
Brain , Connectome , Humans , Brain/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...