Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.500
Filter
1.
Technol Cancer Res Treat ; 23: 15330338241246653, 2024.
Article in English | MEDLINE | ID: mdl-38773763

ABSTRACT

Purpose: Head and neck adenoid cystic carcinoma (HNACC) is a radioresistant tumor. Particle therapy, primarily proton beam therapy and carbon-ion radiation, is a potential radiotherapy treatment for radioresistant malignancies. This study aims to conduct a meta-analysis to evaluate the impact of charged particle radiation therapy on HNACC. Methods: A comprehensive search was conducted in Pubmed, Cochrane Library, Web of Science, Embase, and Medline until December 31, 2022. The primary endpoints were overall survival (OS), local control (LC), and progression-free survival (PFS), while secondary outcomes included treatment-related toxicity. Version 17.0 of STATA was used for all analyses. Results: A total of 14 studies, involving 1297 patients, were included in the analysis. The pooled 5-year OS and PFS rates for primary HNACC were 78% (95% confidence interval [CI] = 66-91%) and 62% (95% CI = 47-77%), respectively. For all patients included, the pooled 2-year and 5-year OS, LC, and PFS rates were as follows: 86.1% (95% CI = 95-100%) and 77% (95% CI = 73-82%), 92% (95% CI = 84-100%) and 73% (95% CI = 61-85%), and 76% (95% CI = 68-84%) and 55% (95% CI = 48-62%), respectively. The rates of grade 3 and above acute toxicity were 22% (95% CI = 13-32%), while late toxicity rates were 8% (95% CI = 3-13%). Conclusions: Particle therapy has the potential to improve treatment outcomes and raise the quality of life for HNACC patients. However, further research and optimization are needed due to the limited availability and cost considerations associated with this treatment modality.


Subject(s)
Carcinoma, Adenoid Cystic , Head and Neck Neoplasms , Humans , Carcinoma, Adenoid Cystic/radiotherapy , Carcinoma, Adenoid Cystic/mortality , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/mortality , Proton Therapy/adverse effects , Proton Therapy/methods , Heavy Ion Radiotherapy/adverse effects , Heavy Ion Radiotherapy/methods , Treatment Outcome
2.
BMC Cardiovasc Disord ; 24(1): 267, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773388

ABSTRACT

BACKGROUND: The effect of nonalcoholic fatty liver disease (NAFLD) on major adverse cardiovascular events (MACEs) can be influenced by the degree of coronary artery stenosis. However, the association between the severity of NAFLD and MACEs in patients who underwent coronary computed tomography angiography (CCTA) is unclear. METHODS: A total of 341 NAFLD patients who underwent CCTA were enrolled. The severity of NAFLD was divided into mild NAFLD and moderate-severe NAFLD by abdominal CT results. The degree of coronary artery stenosis was evaluated by using Coronary Artery Disease Reporting and Data System (CAD-RADS) category. Cox regression analysis and Kaplan-Meier analysis were used to assess poor prognosis. RESULTS: During the follow-up period, 45 of 341 NAFLD patients (13.20%) who underwent CCTA occurred MACEs. The severity of NAFLD (hazard ratio [HR] = 2.95[1.54-5.66]; p = 0.001) and CAD-RADS categories 3-5 (HR = 16.31[6.34-41.92]; p < 0.001) were independent risk factors for MACEs. The Kaplan-Meier analysis showed that moderate to severe NAFLD patients had a worsen prognosis than mild NAFLD patients (log-rank p < 0.001). Moreover, the combined receiver operating characteristic curve of the severity of NAFLD and CAD-RADS category showed a good predicting performance for the risk of MACEs, with an area under the curve of 0.849 (95% CI = 0.786-0.911). CONCLUSION: The severity of NAFLD was independent risk factor for MACEs in patients with obstructive CAD, having CAD-RADS 3-5 categories on CCTA.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Stenosis , Non-alcoholic Fatty Liver Disease , Predictive Value of Tests , Severity of Illness Index , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/complications , Male , Female , Middle Aged , Risk Factors , Risk Assessment , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/mortality , Coronary Artery Disease/complications , Aged , Prognosis , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/mortality , Retrospective Studies , Time Factors
3.
Biotechnol Lett ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733437

ABSTRACT

Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.

4.
FEBS Open Bio ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710658

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is one of the major subtypes of heart failure (HF) and no effective treatments for this common disease exist to date. Cardiac fibrosis is central to the pathology of HF and a potential avenue for the treatment of HFpEF. To explore key fibrosis-related genes and pathways in the pathophysiological process of HFpEF, a mouse model of HFpEF was constructed. The relevant gene expression profiles were downloaded from the Gene Expression Omnibus database, and single-sample Gene Set Enrichment Analysis (ssGSEA) was performed targeting fibrosis-related pathways to explore differentially expressed genes (DEGs) in healthy control and HFpEF heart tissues with cross-tabulation analysis of fibrosis-related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified fibrosis-related genes. The two most significant DEGs were selected, and further validation was conducted in HFpEF mice. The results indicated that myocardial fibrosis was significantly upregulated in HFpEF mice compared to healthy controls, while the ssGSEA results revealed significant differences in the enrichment of nine fibrosis-related pathways in HFpEF myocardial tissue, with 112 out of 798 DEGs being related to fibrosis. The in vivo results demonstrated that expression levels of resistin-like molecule gamma (Relmg) and adenylate cyclase 1 (Adcy1) in the heart tissues of HFpEF mice were significantly higher and lower, respectively, compared to healthy controls. Taken together, these results suggest that Relmg and Acdy1 as well as the fibrosis process may be potential targets for HFpEF treatment.

5.
J Affect Disord ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768820

ABSTRACT

BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanistic studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types.. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.

6.
Biochem Biophys Res Commun ; 720: 150073, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38754161

ABSTRACT

Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.

7.
Biotechnol Adv ; 73: 108353, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38593935

ABSTRACT

L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.

9.
J Immunother Cancer ; 12(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589248

ABSTRACT

BACKGROUND: Despite the encouraging outcome of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) in managing relapsed or refractory multiple myeloma (RRMM) patients, the therapeutic side effects and dysfunctions of CAR-T cells have limited the efficacy and clinical application of this promising approach. METHODS: In this study, we incorporated a short hairpin RNA cassette targeting PD-1 into a BCMA-CAR with an OX-40 costimulatory domain. The transduced PD-1KD BCMA CAR-T cells were evaluated for surface CAR expression, T-cell proliferation, cytotoxicity, cytokine production, and subsets when they were exposed to a single or repetitive antigen stimulation. Safety and efficacy were initially observed in a phase I clinical trial for RRMM patients. RESULTS: Compared with parental BCMA CAR-T cells, PD-1KD BCMA CAR-T cell therapy showed reduced T-cell exhaustion and increased percentage of memory T cells in vitro. Better antitumor activity in vivo was also observed in PD-1KD BCMA CAR-T group. In the phase I clinical trial of the CAR-T cell therapy for seven RRMM patients, safety and efficacy were initially observed in all seven patients, including four patients (4/7, 57.1%) with at least one extramedullary site and four patients (4/7, 57.1%) with high-risk cytogenetics. The overall response rate was 85.7% (6/7). Four patients had a stringent complete response (sCR), one patient had a CR, one patient had a partial response, and one patient had stable disease. Safety profile was also observed in these patients, with an incidence of manageable mild to moderate cytokine release syndrome and without the occurrence of neurological toxicity. CONCLUSIONS: Our study demonstrates a design concept of CAR-T cells independent of antigen specificity and provides an alternative approach for improving the efficacy of CAR-T cell therapy.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , B-Cell Maturation Antigen/genetics , B-Cell Maturation Antigen/metabolism , Down-Regulation , Multiple Myeloma/therapy , Phenotype , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes , Clinical Trials, Phase I as Topic
10.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592508

ABSTRACT

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Subject(s)
Kluyveromyces , Succinic Acid , Kluyveromyces/genetics , Gene Expression Profiling , Transcriptome
11.
Oncogene ; 43(21): 1644-1653, 2024 May.
Article in English | MEDLINE | ID: mdl-38594504

ABSTRACT

Ferroptosis has been demonstrated a promising way to counteract chemoresistance of multiple myeloma (MM), however, roles and mechanism of bone marrow stromal cells (BMSCs) in regulating ferroptosis of MM cells remain elusive. Here, we uncovered that MM cells were more susceptible to ferroptotic induction under the interaction of BMSCs using in vitro and in vivo models. Mechanistically, BMSCs elevated the iron level in MM cells, thereby activating the steroid biosynthesis pathway, especially the production of lanosterol, a major source of reactive oxygen species (ROS) in MM cells. We discovered that direct coupling of CD40 ligand and CD40 receptor constituted the key signaling pathway governing lanosterol biosynthesis, and disruption of CD40/CD40L interaction using an anti-CD40 neutralizing antibody or conditional depletion of Cd40l in BMSCs successfully eliminated the iron level and lanosterol production of MM cells localized in the Vk*MYC Vk12653 or NSG mouse models. Our study deciphers the mechanism of BMSCs dictating ferroptosis of MM cells and highlights the therapeutic potential of non-apoptosis strategies for managing refractory or relapsed MM patients.


Subject(s)
Ferroptosis , Lanosterol , Mesenchymal Stem Cells , Multiple Myeloma , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Animals , Lanosterol/pharmacology , Humans , Mice , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Iron/metabolism , Signal Transduction
12.
Am J Surg ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38594142

ABSTRACT

OBJECTIVES: There remains a lack of consensus regarding the benefits of stent placement following pancreaticojejunostomy in terms of clinically relevant postoperative pancreatic fistulas (CR-POPFs). This study was aimed at analyzing the effects of stent placement, stent technique (internal and external), stent size, and dilation of the main pancreatic duct on CR-POPFs. METHODS: Our study comprised a systematic review and meta-analysis of randomized controlled trials involving patients undergoing pancreaticojejunostomy. The primary outcome was defined as the incidence of CR-POPFs. Additionally, subgroup analyses were conducted, and pooled analyses were performed to provide comparative references. RESULTS: Twelve randomized controlled trials, including a total of 1117 patients, were included. Compared with no stent placement, stenting did not exhibit a significant association with reduced CR-POPF incidence (odds ratio [OR] â€‹= â€‹0.60, 95% CI: 0.34-1.04, P â€‹= â€‹0.07). Subgroup analysis revealed that only external stents, and not internal stents, were significantly associated with a reduced CR-POPF incidence compared with no stent placement (OR â€‹= â€‹0.53, 95% CI: 0.28-0.99, P â€‹= â€‹0.05 vs. OR â€‹= â€‹0.92, 95% CI: 0.28-3.05, P â€‹= â€‹0.89). Furthermore, stent placement in patients with a main pancreatic duct diameter of ≤3 â€‹mm, and not in those with a main pancreatic duct diameter of >3 â€‹mm, was associated with a significantly reduced CR-POPF incidence compared with no stent placement (OR â€‹= â€‹0.24, 95% CI: 0.07-0.78, P â€‹= â€‹0.02 vs. OR â€‹= â€‹1.58, 95% CI: 0.41-6.06, P â€‹= â€‹0.50). CONCLUSIONS: The findings suggest a potential role for external stent placement in the prevention of CR-POPFs after pancreaticojejunostomy, particularly in patients with undilated pancreatic ducts. The reliability of our findings is constrained by the limited number of studies included. PROSPERO REGISTRATION NUMBER: CRD42022380103.

13.
Food Sci Nutr ; 12(4): 2917-2931, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628198

ABSTRACT

Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-ß1 (TGF-ß1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.

14.
Heliyon ; 10(8): e29484, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644820

ABSTRACT

Transforming growth factor ß-activated kinase 1 (TAK1) plays a significant role in controlling several signaling pathways involved with regulating inflammation and apoptosis. As such, it represents an important potential target for developing treatments for traumatic brain injury (TBI). Takinib, a small molecule and selective TAK1 inhibitor, has potent anti-inflammatory activity and has shown promising activity in preclinical studies using rat models to evaluate the potential neuroprotective impact on TBI. The current study used a modified Feeney's weight-drop model to cause TBI in mature Sprague-Dawley male rats. At 30 min post-induction of TBI in the rats, they received an intracerebroventricular (ICV) injection of Takinib followed by assessment of their histopathology and behavior. The results of this study demonstrated how Takinib suppressed TBI progression in the rats by decreasing TAK1, p-TAK1, and nuclear p65 levels while upregulating IκB-α expression. Takinib was also shown to significantly inhibit the production of two pro-inflammatory factors, namely tumor necrosis factor-α and interleukin-1ß. Furthermore, Takinib greatly upregulated the expression of tight junction proteins zonula occludens-1 and claudin-5, reducing cerebral edema. Additionally, Takinib effectively suppressed apoptosis via downregulation of cleaved caspase 3 and Bax and reduction of TUNEL-positive stained cell count. As a result, an enhancement of neuronal function and survival was observed post-TBI. These findings highlight the medicinal value of Takinib in the management of TBI and offer an experimental justification for further investigation of TAK1 as a potential pharmacological target.

15.
Breast Cancer Res ; 26(1): 71, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658999

ABSTRACT

BACKGROUND: To compare the compartmentalized diffusion-weighted models, intravoxel incoherent motion (IVIM) and restriction spectrum imaging (RSI), in characterizing breast lesions and normal fibroglandular tissue. METHODS: This prospective study enrolled 152 patients with 157 histopathologically verified breast lesions (41 benign and 116 malignant). All patients underwent a full-protocol preoperative breast MRI, including a multi-b-value DWI sequence. The diffusion parameters derived from the mono-exponential model (ADC), IVIM model (Dt, Dp, f), and RSI model (C1, C2, C3, C1C2, F1, F2, F3, F1F2) were quantitatively measured and then compared among malignant lesions, benign lesions and normal fibroglandular tissues using Kruskal-Wallis test. The Mann-Whitney U-test was used for the pairwise comparisons. Diagnostic models were built by logistic regression analysis. The ROC analysis was performed using five-fold cross-validation and the mean AUC values were calculated and compared to evaluate the discriminative ability of each parameter or model. RESULTS: Almost all quantitative diffusion parameters showed significant differences in distinguishing malignant breast lesions from both benign lesions (other than C2) and normal fibroglandular tissue (all parameters) (all P < 0.0167). In terms of the comparisons of benign lesions and normal fibroglandular tissues, the parameters derived from IVIM (Dp, f) and RSI (C1, C2, C1C2, F1, F2, F3) showed significant differences (all P < 0.005). When using individual parameters, RSI-derived parameters-F1, C1C2, and C2 values yielded the highest AUCs for the comparisons of malignant vs. benign, malignant vs. normal tissue and benign vs. normal tissue (AUCs = 0.871, 0.982, and 0.863, respectively). Furthermore, the combined diagnostic model (IVIM + RSI) exhibited the highest diagnostic efficacy for the pairwise discriminations (AUCs = 0.893, 0.991, and 0.928, respectively). CONCLUSIONS: Quantitative parameters derived from the three-compartment RSI model have great promise as imaging indicators for the differential diagnosis of breast lesions compared with the bi-exponential IVIM model. Additionally, the combined model of IVIM and RSI achieves superior diagnostic performance in characterizing breast lesions.


Subject(s)
Breast Neoplasms , Breast , Diffusion Magnetic Resonance Imaging , Humans , Female , Diffusion Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Middle Aged , Adult , Aged , Breast/diagnostic imaging , Breast/pathology , Prospective Studies , ROC Curve , Image Interpretation, Computer-Assisted/methods , Young Adult , Diagnosis, Differential
16.
Nat Commun ; 15(1): 3505, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664383

ABSTRACT

The development of optoelectronics mimicking the functions of the biological nervous system is important to artificial intelligence. This work demonstrates an optoelectronic, artificial, afferent-nerve strategy based on memory-electroluminescence spikes, which can realize multiple action-potentials combination through a single optical channel. The memory-electroluminescence spikes have diverse morphologies due to their history-dependent characteristics and can be used to encode distributed sensor signals. As the key to successful functioning of the optoelectronic, artificial afferent nerve, a driving mode for light-emitting diodes, namely, the non-carrier injection mode, is proposed, allowing it to drive nanoscale light-emitting diodes to generate a memory-electroluminescence spikes that has multiple sub-peaks. Moreover, multiplexing of the spikes can be obtained by using optical signals with different wavelengths, allowing for a large signal bandwidth, and the multiple action-potentials transmission process in afferent nerves can be demonstrated. Finally, sensor-position recognition with the bio-inspired afferent nerve is developed and shown to have a high recognition accuracy of 98.88%. This work demonstrates a strategy for mimicking biological afferent nerves and offers insights into the construction of artificial perception systems.


Subject(s)
Action Potentials , Action Potentials/physiology , Luminescence , Neurons, Afferent/physiology , Artificial Intelligence , Humans , Biomimetics/methods
17.
Heliyon ; 10(8): e29826, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681660

ABSTRACT

The feeding rhythm is one of the key factors determining the success of artificial breeding of S. paramamosain. To understand the feeding rhythm of the different zoea larva developmental stages of S. paramamosain, the feeding rate, digestive enzyme activity, and expression of metabolism-related genes were investigated in the present study. The results showed that the S. paramamosain feeding rate has strong diurnal feeding rhythm, being significantly higher at 10:00-14:00 from stages ZI to ZIV. While the feeding rate peaked at 14:00 on Days 10 and 11, the peak shifted to 18:00 on Day 12. The activity of digestive enzymes amylase, pepsin and lipase decreased at night but increased in the daytime, showing a single-phase rhythm similar to that of the feeding rate, suggesting that the digestive enzyme activity was closely associated with the feeding rate during the larval development. Compared to pepsin and lipase, the activity of amylase was the most consistent with feeding rate. In particular, amylase activity peaked at 18:00 on Day 12. Due to its synchronicity with feeding activity, the activity of amylase could provide a potential reference for determining the best feeding time during zoea stages in S. paramamosain breeding. Moreover, the relative mRNA expression of metabolism-related genes SpCHH and SpFAS at most tested points was lower from 10:00 to 14:00, but higher at 18:00 to 6:00 of the next day. On the other hand, the expression patterns of SpHSL and SpTryp were converse to those of SpCHH and SpFAS. Our findings revealed that the S. paramamosain zoea has an obvious feeding rhythm, and the most suitable feeding time was 10:00-18:00 depending on different stages. The feeding rhythm is a critical aspect in aquaculture, influencing a series of physiological functions in aquatic animals. This study provides insights into the feeding rhythm during the zoea development of S. paramamosain, making a significant contribution to optimizing feeding strategy, improving aquafeed utilization, and reducing the impact of residual feed on water environment.

18.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676737

ABSTRACT

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Subject(s)
Thermotoga , Thermotoga/enzymology , Thermotoga/genetics , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/biosynthesis , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Racemases and Epimerases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/biosynthesis , Fructose/metabolism , Fructose/biosynthesis , Fructose/chemistry , Enzyme Stability , Biocatalysis , Mutagenesis, Site-Directed , Hot Temperature
19.
Arch Oral Biol ; 163: 105941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599038

ABSTRACT

OBJECTIVE: Crown dimensions data of deciduous teeth hold anthropological, forensic, and archaeological value. However, such information remains scarce for the Chinese population. This multi-center study aimed to collect a large sample of deciduous crown data from Chinese children using three-dimensional measurement methods and to analyze their dimensions. DESIGN: A total of 1592 children's deciduous dentition samples were included, and the sample size was distributed according to Northeast, North, East, Northwest, Southwest and South China. Digital dental models were reconstructed from plaster dental models. Independent sample t test, paired t test, principal component analysis (PCA), and factor analysis (FA) were used to analyze the tooth crown dimensions. RESULT: 18,318 deciduous teeth from 1592 children were included. Males exhibited slightly larger values than females. The range of sexual dimorphism percentages for each measurement was as follows: mesiodistal diameter (0.40-2.08), buccolingual diameter (0.13-2.24), and maxillogingival diameter (0.48-3.37). The FA results showed that the main trend of crown dimensions changes was the simultaneous increase or decrease in mesiodistal diameter, buccolingual diameter and maxillogingival diameter in three directions. CONCLUSION: This is the first large-scale survey of deciduous tooth crown dimensions in China, which supplements the data of deciduous tooth measurement and provides a reference for clinical application.


Subject(s)
Tooth Crown , Tooth, Deciduous , Humans , Tooth, Deciduous/anatomy & histology , China , Male , Female , Cross-Sectional Studies , Child , Tooth Crown/anatomy & histology , Principal Component Analysis , Models, Dental , Child, Preschool , Imaging, Three-Dimensional/methods , Odontometry/methods , Factor Analysis, Statistical , Sex Characteristics
20.
Int J Biol Macromol ; 267(Pt 1): 131473, 2024 May.
Article in English | MEDLINE | ID: mdl-38614185

ABSTRACT

Actinoplanes utahensis deacylase (AAC)-catalyzed deacylation of echinocandin B (ECB) is a promising method for the synthesis of anidulafungin, the newest of the echinocandin antifungal agents. However, the low activity of AAC significantly limits its practical application. In this work, we have devised a multi-dimensional rational design strategy for AAC, conducting separate analyses on the substrate-binding pocket's volume, curvature, and length. Furthermore, we quantitatively analyzed substrate properties, particularly on hydrophilic and hydrophobic. Accordingly, we tailored the linoleic acid-binding pocket of AAC to accommodate the extended long lipid chain of ECB. By fine-tuning the key residues, the resulting AAC mutants can accommodate the ECB lipid chain with a lower curvature binding pocket. The D53A/I55F/G57M/F154L/Q661L mutant (MT) displayed 331 % higher catalytic efficiency than the wild-type (WT) enzyme. The MT product conversion was 94.6 %, reaching the highest reported level. Utilizing a multi-dimensional rational design for a customized mutation strategy of the substrate-binding pocket is an effective approach to enhance the catalytic efficiency of enzymes in handling complicated substrates.


Subject(s)
Echinocandins , Fungal Proteins , Hydrophobic and Hydrophilic Interactions , Echinocandins/chemistry , Substrate Specificity , Binding Sites , Mutation , Models, Molecular , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...