Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Heliyon ; 10(18): e37712, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315202

ABSTRACT

Diffuse gliomas in adults are highly infiltrative and largely incurable. Whole exome sequencing (WES) has been demonstrated very useful in genetic analysis. Here WES was performed to characterize genomic landscape of adult-type diffuse gliomas to discover the diagnostic, therapeutic and prognostic biomarkers. Somatic and germline variants of 66 patients with adult-type diffuse gliomas were detected by WES based on the next-generation sequencing. TCGA and CGGA datasets were included to analyze the integrated diagnosis and prognosis. Among 66 patients, the diagnosis of 9 cases was changed, in which 8 cases of astrocytoma were corrected into IDH-wildtype glioblastoma (GBM), and 1 oligodendroglioma without 1p/19q co-deletion into astrocytoma. The distribution of mutations including ATRX/TP53 differed in three cohorts. The genetic mutations in GBM mainly concentrated on the cell cycle, PI3K and RTK pathways. The mutational landscape of astrocytoma was more similar to that of GBM, with the highest frequency in germline variants. Patients with IDH-mutant astrocytoma harboring SNVs of PIK3CA and PIK3R1 showed a significantly worse overall survival (OS) than wild-type patients. AEBP1 amplification was associated with shorter OS in GBM. Our study suggests that clinical sequencing can recapitulate previous findings, which may provide a powerful approach to discover diagnostic, therapeutic and prognostic markers for precision medicine in adult-type diffuse gliomas.

2.
ACS Sens ; 9(9): 4591-4598, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39240233

ABSTRACT

This paper proposes a novel multicomponent gas-sensing optical fiber probe system. It utilizes a precisely engineered Platinum-coated capillary fabricated via Atomic Layer Deposition (ALD) technology as the core for enhanced Raman spectroscopy, marking the first application of ALD in creating such a structure for gas Raman sensing. The noble metal capillary gas Raman probe demonstrates a low detection limit of 55 ppm for CO2 with a 30 s exposure time and good repeatability in multicomponent gas sensing. The capillary exhibits excellent stability, environmental resistance, and a large core diameter, enabling a rapid gas exchange rate and making it suitable for practical applications.


Subject(s)
Optical Fibers , Platinum , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Spectrum Analysis, Raman/instrumentation , Platinum/chemistry , Gases/analysis , Gases/chemistry , Carbon Dioxide/analysis , Limit of Detection
3.
EBioMedicine ; 107: 105314, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39191171

ABSTRACT

BACKGROUND: Medications prescribed for chronic diseases can lead to short-term neuropsychiatric symptoms, but their long-term effects on brain structures and psychiatric conditions remain unclear. METHODS: We comprehensively analyzed the FDA Adverse Event Reporting System database and conducted drug target Mendelian Randomization (MR) studies on six categories of common drugs, 477 brain imaging-derived phenotypes (IDPs) and eight psychiatric disorders. Genetic instruments were extracted from expression quantitative trait loci (eQTLs) in blood, brain, and other target tissues, protein quantitative trait loci (pQTLs) in blood, and genome-wide association studies (GWAS) of hemoglobin and cholesterol. Summary statistics for brain IDPs, psychiatric disorders, and gut microbiome were obtained from the BIG40, Psychiatric Genomics Consortium, and MiBioGen. A two-step MR and mediation analysis were employed to screen possible mediators of drug-IDP effects from 119 gut microbiota genera and identify their mediation proportions. FINDINGS: Among 19 drug classes, six drugs were found to be associated with higher risks of psychiatric adverse events, while 11 drugs were associated with higher risks of gastrointestinal adverse events in the FAERS analysis. We identified ten drug-psychiatric disorder associations, 202 drug-IDP associations, 16 drug-microbiota associations, and four drug-microbiota-IDP causal links. For example, PPARG activation mediated HbA1c reduction caused a higher risk of bipolar disorder (BD) II. Genetically proxied GLP-1R agonists were significantly associated with an increase in the volume of the CA3-head of the right hippocampus and the area of the left precuneus cortex, both of which have been shown to correlate with cognition in previous studies. INTERPRETATION: Common drugs may affect brain structure and risk of psychiatric disorder. Oral medications in particular may exert some of these effects by influencing gut microbiota. This study calls for greater attention to be paid to the neuropsychiatric adverse effects of drugs and encourages drug repurposing. FUNDING: National Natural Science Foundation of China (grant No. 82330035, 82130043, 82172685, and 82001223), National Natural Science Foundation of Hunan Province (grant No. 2021SK1010), and the Science Foundation for Distinguished Young Scholars of Changsha (grant No. kq2209006).


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Genome-Wide Association Study , Mendelian Randomization Analysis , Mental Disorders , Pharmacovigilance , Humans , Mental Disorders/genetics , Mental Disorders/etiology , Quantitative Trait Loci , Gastrointestinal Microbiome/drug effects , Databases, Factual , Phenotype , Brain/drug effects , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124782, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-38991616

ABSTRACT

In this study, an innovative ratiometric fluorescence and smartphone-assisted visual sensing platform based on blue-yellow dual-emission carbon dots (BY-CDs) was constructed for the first time to determine brilliant blue. The BY-CDs was synthesized via a facile one-step hydrothermal process involving propyl gallate and o-phenylenediamine. The synthesized BY-CDs exhibit favorable water solubility and exceptional fluorescence stability. Under excitation at 370 nm, BY-CDs show two distinguishable fluorescence emission bands (458 and 558 nm). Upon addition of brilliant blue, the fluorescence intensity at 558 nm exhibited a significant quenching effect attributed to fluorescence resonance energy transfer (FRET), while the fluorescence intensity at 458 nm was basically unchanged. The prepared BY-CDs can effectively serve as a ratiometric nanosensor for determining brilliant blue with the ratio of fluorescence intensities at 458 and 558 nm (F458/F558) as response signal. In addition, the developed ratiometric fluorescence sensor exhibits a noticeable alteration in color from yellow to green under UV light with a wavelength of 365 nm upon addition of varying concentrations of brilliant blue, which provides the possibility of visual detection of brilliant blue by a smartphone application. Finally, the BY-CDs based dual-mode sensing platform successfully detected brilliant blue in actual food samples and achieved a desirable recovery rate. This study highlights the merits of fast, convenient, economical, real-time, visual, high accuracy, excellent precision, good selectivity and high sensitivity for brilliant blue detection, and paves new paths for the monitoring of brilliant blue in real samples.

5.
Proc Natl Acad Sci U S A ; 121(32): e2403652121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083419

ABSTRACT

Leucine-rich glioma-inactivated protein 1 (LGI1), a secretory protein in the brain, plays a critical role in myelination; dysfunction of this protein leads to hypomyelination and white matter abnormalities (WMAs). Here, we hypothesized that LGI1 may regulate myelination through binding to an unidentified receptor on the membrane of oligodendrocytes (OLs). To search for this hypothetic receptor, we analyzed LGI1 binding proteins through LGI1-3 × FLAG affinity chromatography with mouse brain lysates followed by mass spectrometry. An OL-specific membrane protein, the oligodendrocytic myelin paranodal and inner loop protein (OPALIN), was identified. Conditional knockout (cKO) of OPALIN in the OL lineage caused hypomyelination and WMAs, phenocopying LGI1 deficiency in mice. Biochemical analysis revealed the downregulation of Sox10 and Olig2, transcription factors critical for OL differentiation, further confirming the impaired OL maturation in Opalin cKO mice. Moreover, virus-mediated re-expression of OPALIN successfully restored myelination in Opalin cKO mice. In contrast, re-expression of LGI1-unbound OPALIN_K23A/D26A failed to reverse the hypomyelination phenotype. In conclusion, our study demonstrated that OPALIN on the OL membrane serves as an LGI1 receptor, highlighting the importance of the LGI1/OPALIN complex in orchestrating OL differentiation and myelination.


Subject(s)
Cell Differentiation , Intracellular Signaling Peptides and Proteins , Mice, Knockout , Oligodendroglia , Animals , Oligodendroglia/metabolism , Oligodendroglia/cytology , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Myelin Sheath/metabolism , Myelin Proteins/metabolism , Myelin Proteins/genetics
6.
CNS Neurosci Ther ; 30(7): e14839, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021040

ABSTRACT

BACKGROUND: The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS: This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS: The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION: Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.


Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Endoplasmic Reticulum Chaperone BiP , Glioblastoma , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Unfolded Protein Response/physiology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Drug Resistance, Neoplasm/physiology , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000299

ABSTRACT

In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor (TF) is required for specifying the sepals and petals identities and confers a major A-function to antagonize the C-function in the outer floral whorls. In the asterid species Petunia, the AP2-type ROB TFs are required for perianth and pistil development, as well as repressing the B-function together with TOE-type TF BEN. In Long-homostyle (LH) Fagopyrum esculentum, VIGS-silencing showed that FaesAP2 is mainly involved in controlling filament and style length, but FaesTOE is mainly involved in regulating filament length and pollen grain development. Both FaesAP2 (AP2-type) and FaesTOE (TOE-type) are redundantly involved in style and/or filament length determination instead of perianth development. However, neither FaesAP2 nor FaesTOE could directly repress the B and/or C class genes in common buckwheat. Moreover, the FaesAP1_2 silenced flower showed tepal numbers, and filament length decreased obviously. Interestingly, yeast one-hybrid (Y1H) and dual-luciferase reporter (DR) further suggested that FaesTOE directly up-regulates FaesAP1_2 to be involved in filament length determination in LH common buckwheat. Moreover, the knockdown of FaesTOE expression could result in expression down-regulation of the directly target FaesAP1_2 in the FaesTOE-silenced LH plants. Our findings uncover a stamen development pathway in common buckwheat and offer deeper insight into the functional evolution of AP2 orthologs in the early-diverging core eudicots.


Subject(s)
Fagopyrum , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Fagopyrum/genetics , Fagopyrum/growth & development , Fagopyrum/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation/genetics
8.
Langmuir ; 40(24): 12526-12538, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836644

ABSTRACT

l-cysteine, as an eco-friendly and nontoxic corrosion inhibitor, was directly covalently linked to the carbon/carbon double bonds of the GO flakes by a thiol-ene click reaction to avoid decreasing the number of hydrophilic oxygen-containing polar functionalities. The corrosion inhibition performances of Cys-GO toward Q235 steel (QS) in diluted hydrochloric acid were studied by electrochemical methods. The corrosion was a charge transfer-controlled process, and Cys-GO manifested as a mixed-type corrosion inhibitor. The corrosion inhibition efficiency (η) for QS showed a first-increase-and-then-decrease trend with increasing Cys-GO concentrations. The optimum concentration of Cys-GO was 15 mg L-1, and the according η value was up to 90%. The Cys-GO adsorbed on the QS surface to form a protective barrier was responsible for the efficient corrosion inhibition. Langmuir adsorption isotherm model was fitted well with the experiment data, indicating a monolayer adsorption. Furthermore, the coordinate covalent bonds, π-back-donation effect, and electrostatic attraction were responsible for the Cys-GO adsorption on the QS surface.

9.
Chin Neurosurg J ; 10(1): 18, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835088

ABSTRACT

BACKGROUND: This study aimed to investigate clinical features and treatment strategies for intracranial aneurysm (IA) associated with pituitary adenoma (PA). METHODS: We enrolled patients with lesions in the sellar region and age-matched general population who were confirmed with IA from two hospitals. Four types of treatment strategies were performed, which included Type I (both IA and PA were treated with surgery), Type II (IA was treated with surgery and PA was performed by non-surgical treatment), Type III (PA was performed with surgery and observation was available for IA) and Type IV (both IA and PA were performed with non-surgical treatment). RESULTS: The incidence of IA was 2.2% in the general population, 6.1% in patients with PA, 4.3% in patients with Rathke cleft cyst, 2.8% in patients with meningioma and none were found with IA in patients with craniopharyngioma. Age over 50 years (OR, 2.69; 95% CI, 1.20-6.04; P = 0.016), female (OR, 3.83, P = 0.003), and invasive tumor (OR, 3.26, P = 0.003) were associated with a higher incidence of IA in patients with PA. During the mean follow-up of 49.2 months, no patients experienced stroke, and recurrence of aneurysms and aneurysms treated with observation were stable. Of four patients with recurrence of PA, three patients were treated for type I and one patient for type III. CONCLUSIONS: Preoperative evaluation for aneurysm screening is necessary due to the high incidence of IA in PA patients. Our current treatment strategies may provide a benefit for these patients.

10.
Comput Struct Biotechnol J ; 23: 2429-2441, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38882679

ABSTRACT

Background: Observational studies suggested that leukocyte telomere length (LTL) is shortened in COVID-19 patients. However, the genetic association and causality remained unknown. Methods: Based on the genome-wide association of LTL (N = 472,174) and COVID-19 phenotypes (N = 1086,211-2597,856), LDSC and SUPERGNOVA were used to estimate the genetic correlation. Cross-trait GWAS meta-analysis, colocalization, fine-mapping analysis, and transcriptome-wide association study were conducted to explore the shared genetic etiology. Mendelian randomization (MR) was utilized to infer the causality. Upstream and downstream two-step MR was performed to investigate the potential mediating effects. Results: LDSC identified a significant genetic association between LTL and all COVID-19 phenotypes (rG < 0, p < 0.05). Six significant regions were observed for LTL and COVID-19 susceptibility and hospitalization, respectively. Colocalization analysis found rs144204502, rs34517439, and rs56255908 were shared causal variants between LTL and COVID-19 phenotypes. Numerous biological pathways associated with LTL and COVID-19 outcomes were identified, mainly involved in -immune-related pathways. MR showed that longer LTL was significantly associated with a lower risk of COVID-19 severity (OR [95% CI] = 0.81 [0.71-0.92], p = 1.24 ×10-3) and suggestively associated with lower risks of COVID-19 susceptibility (OR [95% CI] = 0.96 [0.92-1.00], p = 3.44 ×10-2) and COVID-19 hospitalization (OR [95% CI] = 0.89 [0.80-0.98], p = 1.89 ×10-2). LTL partially mediated the effects of BMI, smoking, and education on COVID-19 outcomes. Furthermore, six proteins partially mediated the causality of LTL on COVID-19 outcomes, including BNDF, QPCT, FAS, MPO, SFTPB, and APOF. Conclusions: Our findings suggested that shorter LTL was genetically associated with a higher risk of COVID-19 phenotypes, with shared genetic etiology and potential causality.

11.
Front Plant Sci ; 15: 1401414, 2024.
Article in English | MEDLINE | ID: mdl-38872889

ABSTRACT

The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factors involved in plant growth, development, and stress responses. However, AHLs have not been systematically analyzed in radish (Raphanus sativus). Therefore, we performed genome-wide identification and expression pattern, gene structure, and function verifications of radish AHLs. We identified 52 radish AHLs (RsAHL1-RsAHL52), which were unevenly distributed across nine chromosomes. Phylogenetic analysis showed that the RsAHLs were divided into two clades (A and B) and subdivided into three types (I, II, and III). Collinearity analysis revealed that the 52 RsAHLs produced 49 repeat events. Tissue expression profiles revealed differential expression of RsAHLs across different tissues, with higher expression observed in flower organs, particularly petals and anthers. qRT-PCR results indicated that RsAHLs responded to abscisic acid, methyl jasmonate, and abiotic stress (low and high temperatures and drought). Additionally, RsAHL14 induced a dwarf phenotype in tomato plants, and RsAHL14-overexpression tomato plants presented significantly decreased expression levels of the gibberellin (GA) synthetic genes ent-Copalyl diphosphatase, GA3ox-3/-4/-5, and GA20ox-1/-2/-3, but significantly increased expression of the degradation gene GA2ox-1/-3. Thus, RsAHL14 might affect plant growth by regulating GA content. Collectively, our study comprehensively identified RsAHLs in radish and provided a reference for further research on these genes.

12.
Biochem Biophys Res Commun ; 717: 150021, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38718565

ABSTRACT

Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells exhibiting significant therapeutic potential for various diseases. It is generally accepted that clinical application requires massive expansion of MSCs, which is often accompanied by the occurrence of replicative senescence. Additionally, senescent MSCs exhibit significantly reduced proliferation, differentiation, and therapeutic potential. The scale-up of MSCs production and cellular senescence are major challenges for translational applications. This study first collected extracellular vesicles (EVs) from gingival MSCs (GMSCs) under hypoxia preconditioning combined with 3D dynamic culture (obtained EVs designed as H-3D-EVs). Subsequently, we further explored the effects and mechanisms of H-3D-EVs on aging-GMSCs. The results showed that H-3D-EVs improved the proliferation ability and cell activity of aging-GMSCs, and ameliorated their senescence. mRNA sequencing reveals transcriptomic changes in aging-GMSCs. It was found that H-3D-EVs up-regulated genes related to mitochondrial dynamics, cell cycle, and DNA repair, while down-regulated aging-related genes. Furthermore, we verified that H-3D-EVs corrected the mitochondrial dysfunction of aging-GMSCs by improving mitochondrial dynamics. In summary, this study provides a promising strategy for improving the culture methods of GMSCs and avoiding its senescence in large-scale production.


Subject(s)
Cellular Senescence , Extracellular Vesicles , Mesenchymal Stem Cells , Mitochondria , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Humans , Cell Hypoxia , Cells, Cultured , Cell Proliferation , Aging/metabolism , Aging/genetics , Mitochondrial Dynamics
13.
BMJ Open ; 14(5): e080787, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754891

ABSTRACT

INTRODUCTION: Cardiopulmonary complications and cognitive impairment following craniotomy have a significantly impact on the general health of individuals with brain tumours. Observational research indicates that engaging in walking is linked to better prognosis in patient after surgery. This trial aims to explore whether walking exercise prior to craniotomy in brain tumour patients can reduce the incidence of cardiopulmonary complications and preserve patients' cognitive function. METHODS AND ANALYSIS: In this randomised controlled trial, 160 participants with supratentorial brain tumours aged 18-65 years, with a preoperative waiting time of more than 3-4 weeks and without conditions that would interfere with the trial such as cognitive impairment, will be randomly assigned in a ratio of 1:1 to either receive traditional treatment or additional combined with a period of 3-4 weeks of walking exercise of 10 000-15 000 steps per day. Wearable pedometer devices will be used to record step counts. The researchers will evaluate participants at enrolment, baseline, 14 days preoperatively, 3 days prior to surgery and 1 week after surgery or discharge (select which occurs first). The primary outcomes include the incidence of postoperative cardiopulmonary complications and changes in cognitive function (gauged by the Montreal Cognitive Assessment test). Secondary outcomes include the average length of hospital stay, postoperative pain, participant contentment, healthcare-associated costs and incidence of other postoperative surgery-related complications. We anticipate that short-term preoperative walking exercises will reduce the incidence of surgery-related complications in the short term after craniotomy, protect patients' cognitive function, aid patients' postoperative recovery and reduce the financial cost of treatment. ETHICS AND DISSEMINATION: The study protocol has been approved by Ethics Committee of Xiangya Hospital of Central South University (approval number: 202305117). The findings of the research will be shared via publications that have been reviewed by experts in the field and through presentations at conferences. TRIAL REGISTRATION NUMBER: NCT05930288.


Subject(s)
Craniotomy , Supratentorial Neoplasms , Walking , Humans , Craniotomy/adverse effects , Adult , Middle Aged , Supratentorial Neoplasms/surgery , Female , Male , Aged , Preoperative Exercise , Prognosis , Randomized Controlled Trials as Topic , Young Adult , Postoperative Complications/prevention & control , Adolescent , Cognition
14.
J Hazard Mater ; 474: 134757, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820759

ABSTRACT

To address the serious environmental pollution problems of toxic heavy metal ions in water bodies, a novel fluorescent composite hydrogel N, P-CDs@CMC/PEI with a bio-based polymer matrix of carboxylmethyl cellulose (CMC), polyethylenimine (PEI) as a second interpenetrating network and N, P-doped carbon dots (N, P-CDs) as a fluorescent probe was prepared for simultaneous detection and capture of HMIs by a facile and simple one-step approach. The morphology, chemical structure, swelling ratio, mechanical strength and fluorescence property of these composite hydrogels were studied through varied characterization methods. The composite hydrogel showed sensitive and selective fluorescence response with Hg(II) and Fe(III) and the according LOD values were 0.48 and 0.27 mg L-1, respectively. The relationship between the types of the adsorbent, pH value, HMIs concentration and temperature on the adsorption capacity of these composite hydrogels were studied. The pseudo-second-order model and Langmuir model were applicable to explain the adsorption process of CPH2 for Hg(II) and Cr(VI). The maximum calculated adsorption capacities for the above targeted HMIs by Langmuir model were 846.7 and 289.5 mg g-1, respectively. Coexisting inorganic salts and organic acids in low concentration had little effects on Hg(II) and Cr(VI) removal and the composite hydrogel showed good recyclability and stability for Hg(II) and Cr(VI) removal after four cycles. The electrostatic attraction and coordination covalent bonds were responsible for the adsorption process.

15.
Neurology ; 102(9): e209299, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38598742

ABSTRACT

BACKGROUND AND OBJECTIVES: Stroke attributable to nonoptimal temperature needs more attention with dramatic climate change. The aim of this study was to estimate the global burden and distribution characteristics of the burden. METHODS: In this ecological study, we collected data from the Climate Research Unit Gridded Time Series, the World Bank databases, and the Global Burden of Diseases study to estimate the distribution of burden. We used the joinpoint model, decomposition analysis, age-period-cohort model, panel data analysis, and health inequality analysis to assess the different types of stroke burden attributable to different climatic conditions. RESULTS: The burden of stroke attributable to nonoptimal temperature continued to grow, and aging was a key factor in this increase. In 2019, 521,031 (95% uncertainty interval [UI] 402,433-663,996) deaths and 9,423,649 (95% UI 7,207,660-12,055,172) disability-adjusted life years [DALYs] attributable to stroke due to nonoptimal temperature were recorded globally. Globally, men (age-standardized mortality rate [ASMR] 7.70, 95% UI 5.80-9.73; age-standardized DALY rate [ASDR] 139.69, 95% UI 102.96-178.54 in 2019) had a heavier burden than women (ASMR 5.89, 95% UI 4.50-7.60; ASDR 96.02, 95% UI 72.62-123.85 in 2019). Central Asia (ASMR 18.12, 95% UI 13.40-24.53; ASDR 327.35, 95% UI 240.24-440.61 in 2019) had the heaviest burden at the regional level. In the national level, North Macedonia (ASMR 32.97, 95% UI 20.57-47.44 in 2019) and Mongolia (ASDR 568.54, 95% UI 242.03-1,031.14 in 2019) had the highest ASMR/ASDR, respectively. Low temperature currently contributes to the main burden (deaths 474,002, 95% UI 355,077-606,537; DALYs 8,357,198, 95% UI 6,186,217-10,801,911 attributable to low temperature vs deaths 48,030, 95% UI 5,630-104,370; DALYs 1,089,329, 95% UI 112,690-2,375,345 attributable to high temperature in 2019). However, the burden due to high temperature has increased rapidly, especially among people aged older than 10 years, and was disproportionately concentrated in low sociodemographic index (SDI) regions such as Africa. In addition, the rapid increase in the stroke burden due to high temperature in Central Asia also requires special attention. DISCUSSION: This is the first study to assess the global stroke burden attributed to nonoptimal temperature. The dramatic increase in the burden due to high temperature requires special attention, especially in low-SDI countries.


Subject(s)
Global Burden of Disease , Stroke , Male , Humans , Female , Aged , Temperature , Health Status Disparities , Quality-Adjusted Life Years , Global Health , Stroke/epidemiology
16.
J Environ Manage ; 357: 120766, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565032

ABSTRACT

Biofouling presents hazards to a variety of freshwater and marine underwater infrastructures and is one of the direct causes of species invasion. These negative impacts provide a unified goal for both industry practitioners and researchers: the development of novel antifouling materials to prevent the adhesion of biofouling. The prohibition of tributyltin (TBT) by the International Maritime Organization (IMO) in 2001 propelled the research and development of new antifouling materials. However, the evaluation process and framework for these materials remain incomplete and unsystematic. This mini-review starts with the classification and principles of new antifouling materials, discussing and summarizing the methods for assessing their biofouling resistance. The paper also compiles the relevant regulations and environmental requirements from different countries necessary for developing new antifouling materials with commercial potential. It concludes by highlighting the current challenges in antifouling material development and future outlooks. Systematic evaluation of newly developed antifouling materials can lead to the emergence of more genuinely applicable solutions, transitioning from merely laboratory products to materials that can be effectively used in real-world applications.


Subject(s)
Biofouling , Biofouling/prevention & control , Fresh Water , Industry
17.
Toxicology ; 504: 153799, 2024 May.
Article in English | MEDLINE | ID: mdl-38608860

ABSTRACT

Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.


Subject(s)
Central Nervous System , Microplastics , Nanoparticles , Animals , Humans , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Central Nervous System/drug effects , Microplastics/toxicity , Nanoparticles/toxicity , Neurotoxicity Syndromes/etiology
18.
Biofouling ; 40(2): 130-152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38450626

ABSTRACT

The identification and management of biofouling remain pressing challenges in marine and freshwater ecosystems, with significant implications for environmental sustainability and industrial operations. This comprehensive review synthesizes the current state-of-the-art in biofouling identification technologies, examining eight prominent methodologies: Microscopy Examination, Molecular Biology, Remote Sensing, Community Involvement, Ecological Methods, Artificial Intelligence, Chemical Analysis, and Macro Photography. Each method is evaluated for its respective advantages and disadvantages, considering factors such as precision, scalability, cost, and data quality. Furthermore, the review identifies current obstacles that inhibit the optimal utilization of these technologies, ranging from technical limitations and high operational costs to issues of data inconsistency and subjectivity. Finally, the review posits a future outlook, advocating for the development of integrated, standardized systems that amalgamate the strengths of individual approaches. Such advancement will pave the way for more effective and sustainable strategies for biofouling identification and management.


Subject(s)
Biofouling , Biofouling/prevention & control , Biofilms , Ecosystem , Artificial Intelligence
19.
Sensors (Basel) ; 24(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38400469

ABSTRACT

The construction of large-diameter shield tunnels underwater involves complex variations in water and earth load outside the tunnel segment, as well as intricate mechanical responses. This study analyzes the variation laws of external loads, axial forces, and bending moments acting on the segment ring during the shield assembly and removal from the shield tail. It accomplishes this through the establishment of an on-site monitoring system based on the Internet of Things (IoT) and proposes a Bayesian-genetic algorithm model to estimate the water and earth pressure. The fluctuation section exhibits a peak load twice as high as that in the stable section. These variations are influenced by Jack thrust, shield shell force, and grouting pressure. The peak load observed in the fluctuation section is twice as high as the load observed in the stable section. During the shield tail removal process, the internal forces undergo significant fluctuations due to changes in both load and boundary conditions, and the peak value of the axial force during the fluctuation section is eight times higher than that during the stable section, while the peak value of the bending moment during the fluctuation section is five times higher than that during the stable section. The earth and water pressure calculated using the inversion analysis method, which relies on the measured internal forces, closely matches the actual measured values. The results demonstrate that the accuracy of the water and earth pressure obtained through inversion analysis is twice as high as that obtained using the full coverage pressure method. These results can serve as a valuable reference for similar projects.

SELECTION OF CITATIONS
SEARCH DETAIL