Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 114109, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613782

ABSTRACT

The gut must perform a dual role of protecting the host against toxins and pathogens while harboring mutualistic microbiota. Previous studies suggested that the NADPH oxidase Duox contributes to intestinal homeostasis in Drosophila by producing reactive oxygen species (ROS) in the gut that stimulate epithelial renewal. We find instead that the ROS generated by Duox in the Malpighian tubules leads to the production of Upd3, which enters the gut and stimulates stem cell proliferation. We describe in Drosophila the existence of a countercurrent flow system, which pushes tubule-derived Upd3 to the anterior part of the gut and stimulates epithelial renewal at a distance. Thus, our paper clarifies the role of Duox in gut homeostasis and describes the existence of retrograde fluid flow in the gut, collectively revealing a fascinating example of inter-organ communication.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Intestinal Mucosa , Malpighian Tubules , Reactive Oxygen Species , Animals , Malpighian Tubules/metabolism , Drosophila Proteins/metabolism , Reactive Oxygen Species/metabolism , Intestinal Mucosa/metabolism , Drosophila melanogaster/metabolism , NADPH Oxidases/metabolism , Dual Oxidases/metabolism , Dual Oxidases/genetics , Cell Proliferation , Homeostasis , Drosophila/metabolism
2.
Pest Manag Sci ; 75(7): 1921-1932, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30565410

ABSTRACT

BACKGROUND: Bactrocera dorsalis (Hendel), a very destructive insect pest of many fruits and vegetables, is widespread in many Asian countries. To facilitate control of this pest, it is essential to investigate its genetics and gene function using targeted gene disruption. RESULTS: Here, we describe successful targeted mutagenesis of the white and transformer genes in B. dorsalis through use of the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. Co-injection of the white sgRNA and Cas9 mRNA into B. dorsalis embryos caused eye color change, and the white mutations in the germline were heritable. CRISPR-mediated knockout of the sex determination gene transformer (tra) in B. dorsalis resulted in a male-biased sex ratio and adult flies with abnormal outer and interior reproductive organs. Small indels and substitutions were induced by CRIRPR for both genes. CONCLUSION: Our data demonstrate that somatic and germline genome engineering of the pest B. dorsalis can be performed efficiently using the CRISPR/Cas9 system, opening the door to the use of the CRISPR-mediated method for functional annotations of genes in B. dorsalis and for its population control using, for example, such as gene drive. © 2018 Society of Chemical Industry.


Subject(s)
CRISPR-Cas Systems , Tephritidae/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Eye Color/genetics , Gene Editing/methods , Germ Cells , INDEL Mutation , Mutagenesis , RNA Editing , RNA, Messenger , Sex Determination Processes , Tephritidae/embryology
SELECTION OF CITATIONS
SEARCH DETAIL