Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Case Rep ; 18(1): 213, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685076

ABSTRACT

BACKGROUND: Prevotella heparinolytica is a Gram-negative bacterium that is commonly found in the oral, intestinal, and urinary tracts. It has been extensively studied in lower respiratory tract infections in horses, which has heparinolytic activity and can secrete heparinase and further induces virulence factors in cells and causes disease. However, no such cases have been reported in humans. CASE PRESENTATION: A 58-year-old male patient from China presented to the respiratory clinic in Suzhou with a productive cough producing white sputum for 20 days and fever for 3 days. Prior to this visit, a chest computed tomography scan was conducted, which revealed multiple patchy nodular opacities in both lungs. On admission, the patient presented with a temperature of 38.1 °C and a pulse rate of 110 beats per minute. Despite routine anti-infective treatment with moxifloxacin, his temperature fluctuated and the treatment was ineffective. The patient was diagnosed with Prevotella heparinolytica infection through metagenomic next-generation sequencing. Therefore, the antibiotics were switched to piperacillin-tazobactam in combination with ornidazole, which alleviated his symptoms; 1 week after discharge, the patient returned to the clinic for a follow-up chest computed tomography, and the opacities on the lungs continued to be absorbed. CONCLUSION: Prevotella heparinolytica is an opportunistic pathogen. However, it has not been reported in human pneumonia. In refractory pneumonia, measures such as metagenomic next-generation sequencing can be used to identify pathogens and help guide antibiotic selection and early support.


Subject(s)
Anti-Bacterial Agents , Prevotella , Tomography, X-Ray Computed , Humans , Male , Middle Aged , Prevotella/isolation & purification , Anti-Bacterial Agents/therapeutic use , Bacteroidaceae Infections/drug therapy , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/diagnosis , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Piperacillin, Tazobactam Drug Combination/therapeutic use
2.
Nucleic Acids Res ; 51(14): 7184-7197, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37395403

ABSTRACT

Single nucleotide mutation rates have critical implications for human evolution and genetic diseases. Importantly, the rates vary substantially across the genome and the principles underlying such variations remain poorly understood. A recent model explained much of this variation by considering higher-order nucleotide interactions in the 7-mer sequence context around mutated nucleotides. This model's success implicates a connection between DNA shape and mutation rates. DNA shape, i.e. structural properties like helical twist and tilt, is known to capture interactions between nucleotides within a local context. Thus, we hypothesized that changes in DNA shape features at and around mutated positions can explain mutation rate variations in the human genome. Indeed, DNA shape-based models of mutation rates showed similar or improved performance over current nucleotide sequence-based models. These models accurately characterized mutation hotspots in the human genome and revealed the shape features whose interactions underlie mutation rate variations. DNA shape also impacts mutation rates within putative functional regions like transcription factor binding sites where we find a strong association between DNA shape and position-specific mutation rates. This work demonstrates the structural underpinnings of nucleotide mutations in the human genome and lays the groundwork for future models of genetic variations to incorporate DNA shape.


Subject(s)
Genome, Human , Mutation Rate , Humans , Mutation , DNA/genetics , Nucleotides/genetics
3.
Hum Mol Genet ; 32(6): 959-970, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36229919

ABSTRACT

Haploinsufficiency of TGF-beta-activated kinase 1 (MAP3K7) binding protein 2 (TAB2) has been associated with congenital heart disease and more recently multiorgan structural abnormalities. Missense variant represents a major proportion of non-synonymous TAB2 variants reported in gnomAD (295/576) and Clinvar (16/73), most of which are variants of uncertain significance (VUSs). However, interpretation of TAB2 missense variants remains challenging because of lack of functional assays. To address this issue, we established a cell-based luciferase assay that enables high-throughput screening of TAB2 variants to assess the functional consequence for predicting variant pathogenicity. Using this platform, we screened 47 TAB2 variants including five pathogenic controls and one benign control, and the results showed that the transcriptional activity of activator protein 1 (AP-1) but not nuclear factor kappa B predicts the TAB2 variant pathogenicity. This assay provides accurate functional readout for both loss-of-function (LOF) and gain-of-function variants, which are associated with distinct phenotypes. In all, 22 out of 32 tested VUSs were reclassified. Genotype-Phenotype association showed that most patients with partial LOF variants do not exhibit congenital heart disease but high frequency of developmental delay, hypotonia and dysmorphic features, which suggests that genetic testing for TAB2 is needed for a broader spectrum of patients with more diverse phenotypes. Molecular modeling with Npl4 zinc finger (NZF) domain variants revealed that the stability of the NZF domain in TAB2 protein is crucial for AP-1 activation. In conclusion, we developed a highly effective functional assay for TAB2 variant prediction and interpretation.


Subject(s)
Adaptor Proteins, Signal Transducing , Heart Defects, Congenital , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Virulence , NF-kappa B/metabolism , Heart Defects, Congenital/genetics
4.
NPJ Breast Cancer ; 7(1): 5, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479246

ABSTRACT

Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) that efficiently delivers a highly potent microtubule inhibitor to HER2 overexpressing cells. Herein, we utilize HER2 transformed human mammary epithelial cells (HME2) to demonstrate in vitro and in vivo response and recurrence upon T-DM1 treatment. Continuous in vitro dosing of HME2 cells with T-DM1 failed to produce a spontaneously resistant cell line. However, induction of epithelial-mesenchymal transition (EMT) via pretreatment with TGF-ß1 was capable of promoting emergence of T-DM1-resistant (TDM1R) cells. Flow cytometric analyses indicated that induction of EMT decreased trastuzumab binding, prior to overt loss of HER2 expression in TDM1R cells. Kinome analyses of TDM1R cells indicated increased phosphorylation of ErbB1, ErbB4, and FGFR1. TDM1R cells failed to respond to the ErbB kinase inhibitors lapatinib and afatinib, but they acquired sensitivity to FIIN4, a covalent FGFR kinase inhibitor. In vivo, minimal residual disease (MRD) remained detectable via bioluminescent imaging following T-DM1-induced tumor regression. Upon cessation of the ADC, relapse occurred and secondary tumors were resistant to additional rounds of T-DM1. These recurrent tumors could be inhibited by FIIN4. Moreover, ectopic overexpression of FGFR1 was sufficient to enhance tumor growth, diminish trastuzumab binding, and promote recurrence following T-DM1-induced MRD. Finally, patient-derived xenografts from a HER2+ breast cancer patient who had progressed on trastuzumab failed to respond to T-DM1, but tumor growth was significantly inhibited by FIIN4. Overall, our studies strongly support therapeutic combination of TDM1 with FGFR-targeted agents in HER2+ breast cancer.

5.
Cancer Immunol Res ; 8(12): 1542-1553, 2020 12.
Article in English | MEDLINE | ID: mdl-33093218

ABSTRACT

The effectiveness of immunotherapy as a treatment for metastatic breast cancer is limited due to low numbers of infiltrating lymphocytes in metastatic lesions. Herein, we demonstrated that adjuvant therapy using FIIN4, a covalent inhibitor of fibroblast growth factor receptor (FGFR), dramatically delayed the growth of pulmonary metastases in syngeneic models of metastatic breast cancer. In addition, we demonstrated in a syngeneic model of systemic tumor dormancy that targeting of FGFR enhanced the immunogenicity of the pulmonary tumor microenvironment through increased infiltration of CD8+ lymphocytes and reduced presence of myeloid suppressor cells. Similar impacts on immune cell infiltration were observed upon genetic depletion of FGFR1 in tumor cells, which suggested a direct influence of FGFR signaling on lymphocyte trafficking. Suppression of CD8+ lymphocyte infiltration was consistent with FGFR-mediated inhibition of the T-cell chemoattractant CXCL16. Initial attempts to concomitantly administer FIIN4 with immune checkpoint blockade failed due to inhibition of immune-mediated tumor cell killing via blockade of T-cell receptor signaling by FIIN4. However, this was overcome by using a sequential dosing protocol that consisted of FIIN4 treatment followed by anti-PD-L1. These data illustrate the complexities of combining kinase inhibitors with immunotherapy and provide support for further assessment of FGFR targeting as an approach to enhance antitumor immunity and improve immunotherapy response rates in patients with metastatic breast cancer.


Subject(s)
Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokine CXCL16 , Female , Humans , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Programmed Cell Death 1 Receptor/immunology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
6.
Phys Rev E ; 102(3-1): 032127, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33076042

ABSTRACT

In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with strong spin-orbit couplings along the sawtooth chain. The competing exchange interactions between the nearest neighbors and the second neighbors stabilize the semimetallic ground state in terms of spinless fermions, and give rise to a rich phase diagram, which consists of three gapless phases. We find distinct phases are characterized by the number of Weyl nodes in the momentum space, and such changes in the topology of the Fermi surface without symmetry breaking produce a variety of Lifshitz transitions, in which the Weyl nodes situating at k=π change from type I to type II. A coexistence of type-I and type-II Weyl nodes is found in phase II. The information measures including concurrence, entanglement entropy, and relative entropy can effectively signal the second-order transitions. The results indicate that the Gamma model can act as an exactly solvable model to describe Lifshitz phase transitions in correlated electron systems.

7.
Mol Cancer Ther ; 17(7): 1554-1565, 2018 07.
Article in English | MEDLINE | ID: mdl-29716963

ABSTRACT

Polo-like kinase 1 (Plk1), a crucial regulator of cell-cycle progression, is overexpressed in multiple types of cancers and has been proven to be a potent and promising target for cancer treatment. In case of prostate cancer, we once showed that antineoplastic activity of Plk1 inhibitor is largely due to inhibition of androgen receptor (AR) signaling. However, we also discovered that Plk1 inhibition causes activation of the ß-catenin pathway and increased expression of c-MYC, eventually resulting in resistance to Plk1 inhibition. JQ1, a selective small-molecule inhibitor targeting the amino-terminal bromodomains of BRD4, has been shown to dramatically inhibit c-MYC expression and AR signaling, exhibiting antiproliferative effects in a range of cancers. Because c-MYC and AR signaling are essential for prostate cancer initiation and progression, we aim to test whether targeting Plk1 and BRD4 at the same time is an effective approach to treat prostate cancer. Herein, we show that a combination of Plk1 inhibitor GSK461364A and BRD4 inhibitor JQ1 had a strong synergistic effect on castration-resistant prostate cancer (CRPC) cell lines, as well as in CRPC xenograft tumors. Mechanistically, the synergistic effect is likely due to two reasons: (i) Plk1 inhibition results in the accumulation of ß-catenin in the nucleus, thus elevation of c-MYC expression, whereas JQ1 treatment directly suppresses c-MYC transcription; (ii) Plk1 and BRD4 dual inhibition acts synergistically in inhibition of AR signaling. Mol Cancer Ther; 17(7); 1554-65. ©2018 AACR.


Subject(s)
Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics , Animals , Azepines/administration & dosage , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Nuclear Proteins/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, Androgen/genetics , Signal Transduction/drug effects , Thiophenes/pharmacology , Transcription Factors/antagonists & inhibitors , Triazoles/administration & dosage , Xenograft Model Antitumor Assays , beta Catenin/genetics , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...