Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 26(5): 504-517, 2020 05.
Article in English | MEDLINE | ID: mdl-31867846

ABSTRACT

AIMS: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants. METHODS: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle. RESULTS: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group. CONCLUSION: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Anti-Inflammatory Agents/administration & dosage , Hematopoietic Stem Cell Transplantation/methods , Inflammation Mediators/antagonists & inhibitors , Motor Skills Disorders/therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , Inflammation Mediators/metabolism , Injections, Intraventricular/methods , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Motor Skills Disorders/genetics , Motor Skills Disorders/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...