Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 385(6712): 962-966, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208109

ABSTRACT

After leaving the Sun's corona, the solar wind continues to accelerate and cools, but more slowly than expected for a freely expanding adiabatic gas. Alfvén waves are perturbations of the interplanetary magnetic field that transport energy. We use in situ measurements from the Parker Solar Probe and Solar Orbiter spacecraft to investigate a stream of solar wind as it traverses the inner heliosphere. The observations show heating and acceleration of the plasma between the outer edge of the corona and near the orbit of Venus, along with the presence of large-amplitude Alfvén waves. We calculate that the damping and mechanical work performed by the Alfvén waves are sufficient to power the heating and acceleration of the fast solar wind in the inner heliosphere.

2.
Rev Sci Instrum ; 89(11): 114503, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501281

ABSTRACT

This paper describes a novel electrostatic analyzer concept to measure suprathermal ions, a Double-Cusp Analyzer for SupraThermals (DCAST) that employs a double-shell cusp structure. Due to the necessity of measuring higher energy levels to cover the suprathermal range, existing ion instruments require greater size and mass. Moreover, observations of potentially low-flux suprathermal ions require a long integration time to fully characterize key ion properties in the plasmas (e.g., anisotropy and energy spectrum) with necessary counting statistics. DCAST covers the suprathermal energy range (2-300 keV/q) spanning heated solar wind and pickup ions; it enables a high cadence, high angular resolution, and wide angle coverage measurement while conserving resources such as mass and size. As a proof-of-concept study, the performance of a prototype DCAST was verified by laboratory measurements (geometric factor, K-factor, and energy resolution), which also involved investigating noise characteristics coming from cross-sector contamination and foreground extreme ultra-violet photons. To understand the specific characteristics of the double-shell type design, the inner and outer sector voltage ratio (R V ) effects were examined in terms of the electro-static analyzer performance.

3.
Rev Sci Instrum ; 86(8): 083302, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26329176

ABSTRACT

This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1-40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

SELECTION OF CITATIONS
SEARCH DETAIL