Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Bioinformatics ; 24(1): 412, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37915001

ABSTRACT

BACKGROUND: The PubMed archive contains more than 34 million articles; consequently, it is becoming increasingly difficult for a biomedical researcher to keep up-to-date with different knowledge domains. Computationally efficient and interpretable tools are needed to help researchers find and understand associations between biomedical concepts. The goal of literature-based discovery (LBD) is to connect concepts in isolated literature domains that would normally go undiscovered. This usually takes the form of an A-B-C relationship, where A and C terms are linked through a B term intermediate. Here we describe Serial KinderMiner (SKiM), an LBD algorithm for finding statistically significant links between an A term and one or more C terms through some B term intermediate(s). The development of SKiM is motivated by the observation that there are only a few LBD tools that provide a functional web interface, and that the available tools are limited in one or more of the following ways: (1) they identify a relationship but not the type of relationship, (2) they do not allow the user to provide their own lists of B or C terms, hindering flexibility, (3) they do not allow for querying thousands of C terms (which is crucial if, for instance, the user wants to query connections between a disease and the thousands of available drugs), or (4) they are specific for a particular biomedical domain (such as cancer). We provide an open-source tool and web interface that improves on all of these issues. RESULTS: We demonstrate SKiM's ability to discover useful A-B-C linkages in three control experiments: classic LBD discoveries, drug repurposing, and finding associations related to cancer. Furthermore, we supplement SKiM with a knowledge graph built with transformer machine-learning models to aid in interpreting the relationships between terms found by SKiM. Finally, we provide a simple and intuitive open-source web interface ( https://skim.morgridge.org ) with comprehensive lists of drugs, diseases, phenotypes, and symptoms so that anyone can easily perform SKiM searches. CONCLUSIONS: SKiM is a simple algorithm that can perform LBD searches to discover relationships between arbitrary user-defined concepts. SKiM is generalized for any domain, can perform searches with many thousands of C term concepts, and moves beyond the simple identification of an existence of a relationship; many relationships are given relationship type labels from our knowledge graph.


Subject(s)
Algorithms , Neoplasms , Humans , PubMed , Knowledge , Knowledge Discovery
2.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37397987

ABSTRACT

Background: The PubMed database contains more than 34 million articles; consequently, it is becoming increasingly difficult for a biomedical researcher to keep up-to-date with different knowledge domains. Computationally efficient and interpretable tools are needed to help researchers find and understand associations between biomedical concepts. The goal of literature-based discovery (LBD) is to connect concepts in isolated literature domains that would normally go undiscovered. This usually takes the form of an A-B-C relationship, where A and C terms are linked through a B term intermediate. Here we describe Serial KinderMiner (SKiM), an LBD algorithm for finding statistically significant links between an A term and one or more C terms through some B term intermediate(s). The development of SKiM is motivated by the the observation that there are only a few LBD tools that provide a functional web interface, and that the available tools are limited in one or more of the following ways: 1) they identify a relationship but not the type of relationship, 2) they do not allow the user to provide their own lists of B or C terms, hindering flexibility, 3) they do not allow for querying thousands of C terms (which is crucial if, for instance, the user wants to query connections between a disease and the thousands of available drugs), or 4) they are specific for a particular biomedical domain (such as cancer). We provide an open-source tool and web interface that improves on all of these issues. Results: We demonstrate SKiM's ability to discover useful A-B-C linkages in three control experiments: classic LBD discoveries, drug repurposing, and finding associations related to cancer. Furthermore, we supplement SKiM with a knowledge graph built with transformer machine-learning models to aid in interpreting the relationships between terms found by SKiM. Finally, we provide a simple and intuitive open-source web interface ( https://skim.morgridge.org ) with comprehensive lists of drugs, diseases, phenotypes, and symptoms so that anyone can easily perform SKiM searches. Conclusions: SKiM is a simple algorithm that can perform LBD searches to discover relationships between arbitrary user-defined concepts. SKiM is generalized for any domain, can perform searches with many thousands of C term concepts, and moves beyond the simple identification of an existence of a relationship; many relationships are given relationship type labels from our knowledge graph.

3.
F1000Res ; 9: 832, 2020.
Article in English | MEDLINE | ID: mdl-35083039

ABSTRACT

Many important scientific discoveries require lengthy experimental processes of trial and error and could benefit from intelligent prioritization based on deep domain understanding. While exponential growth in the scientific literature makes it difficult to keep current in even a single domain, that same rapid growth in literature also presents an opportunity for automated extraction of knowledge via text mining. We have developed a web application implementation of the KinderMiner algorithm for proposing ranked associations between a list of target terms and a key phrase. Any key phrase and target term list can be used for biomedical inquiry. We built the web application around a text index derived from PubMed. It is the first publicly available implementation of the algorithm, is fast and easy to use, and includes an interactive analysis tool. The KinderMiner web application is a public resource offering scientists a cohesive summary of what is currently known about a particular topic within the literature, and helping them to prioritize experiments around that topic. It performs comparably or better to similar state-of-the-art text mining tools, is more flexible, and can be applied to any biomedical topic of interest. It is also continually improving with quarterly updates to the underlying text index and through response to suggestions from the community. The web application is available at https://www.kinderminer.org.

4.
J Biomol NMR ; 73(1-2): 5-9, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30580387

ABSTRACT

The growth of the biological nuclear magnetic resonance (NMR) field and the development of new experimental technology have mandated the revision and enlargement of the NMR-STAR ontology used to represent experiments, spectral and derived data, and supporting metadata. We present here a brief description of the NMR-STAR ontology and software tools for manipulating NMR-STAR data files, editing the files, extracting selected data, and creating data visualizations. Detailed information on these is accessible from the links provided.


Subject(s)
Biological Ontologies , Nuclear Magnetic Resonance, Biomolecular , Information Storage and Retrieval , Software , Vocabulary, Controlled
5.
Biophys J ; 112(8): 1529-1534, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28445744

ABSTRACT

Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Software , Access to Information , Bayes Theorem , Cloud Computing , Internet , Metadata
6.
J Biomed Semantics ; 7(1): 16, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27927232

ABSTRACT

BACKGROUND: The nuclear magnetic resonance (NMR) spectroscopic data for biological macromolecules archived at the BioMagResBank (BMRB) provide a rich resource of biophysical information at atomic resolution. The NMR data archived in NMR-STAR ASCII format have been implemented in a relational database. However, it is still fairly difficult for users to retrieve data from the NMR-STAR files or the relational database in association with data from other biological databases. FINDINGS: To enhance the interoperability of the BMRB database, we present a full conversion of BMRB entries to two standard structured data formats, XML and RDF, as common open representations of the NMR-STAR data. Moreover, a SPARQL endpoint has been deployed. The described case study demonstrates that a simple query of the SPARQL endpoints of the BMRB, UniProt, and Online Mendelian Inheritance in Man (OMIM), can be used in NMR and structure-based analysis of proteins combined with information of single nucleotide polymorphisms (SNPs) and their phenotypes. CONCLUSIONS: We have developed BMRB/XML and BMRB/RDF and demonstrate their use in performing a federated SPARQL query linking the BMRB to other databases through standard semantic web technologies. This will facilitate data exchange across diverse information resources.


Subject(s)
Biological Ontologies , Internet , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Semantics , Databases, Protein , Proteins/metabolism
7.
PLoS One ; 9(12): e113523, 2014.
Article in English | MEDLINE | ID: mdl-25436610

ABSTRACT

Many aspects of macroevolutionary theory and our understanding of biotic responses to global environmental change derive from literature-based compilations of paleontological data. Existing manually assembled databases are, however, incomplete and difficult to assess and enhance with new data types. Here, we develop and validate the quality of a machine reading system, PaleoDeepDive, that automatically locates and extracts data from heterogeneous text, tables, and figures in publications. PaleoDeepDive performs comparably to humans in several complex data extraction and inference tasks and generates congruent synthetic results that describe the geological history of taxonomic diversity and genus-level rates of origination and extinction. Unlike traditional databases, PaleoDeepDive produces a probabilistic database that systematically improves as information is added. We show that the system can readily accommodate sophisticated data types, such as morphological data in biological illustrations and associated textual descriptions. Our machine reading approach to scientific data integration and synthesis brings within reach many questions that are currently underdetermined and does so in ways that may stimulate entirely new modes of inquiry.


Subject(s)
Data Mining/methods , Databases, Factual , Paleontology , Documentation , Geological Phenomena
8.
Genetics ; 195(3): 1077-86, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23979570

ABSTRACT

Automated image acquisition, a custom analysis algorithm, and a distributed computing resource were used to add time as a third dimension to a quantitative trait locus (QTL) map for plant root gravitropism, a model growth response to an environmental cue. Digital images of Arabidopsis thaliana seedling roots from two independently reared sets of 162 recombinant inbred lines (RILs) and one set of 92 near isogenic lines (NILs) derived from a Cape Verde Islands (Cvi) × Landsberg erecta (Ler) cross were collected automatically every 2 min for 8 hr following induction of gravitropism by 90° reorientation of the sample. High-throughput computing (HTC) was used to measure root tip angle in each of the 1.1 million images acquired and perform statistical regression of tip angle against the genotype at each of the 234 RIL or 102 NIL DNA markers independently at each time point using a standard stepwise procedure. Time-dependent QTL were detected on chromosomes 1, 3, and 4 by this mapping method and by an approach developed to treat the phenotype time course as a function-valued trait. The QTL on chromosome 4 was earliest, appearing at 0.5 hr and remaining significant for 5 hr, while the QTL on chromosome 1 appeared at 3 hr and thereafter remained significant. The Cvi allele generally had a negative effect of 2.6-4.0%. Heritability due to the QTL approached 25%. This study shows how computer vision and statistical genetic analysis by HTC can characterize the developmental timing of genetic architectures.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Quantitative Trait, Heritable , Chromosome Mapping , Genes, Plant , Gravitropism/genetics , Image Interpretation, Computer-Assisted , Models, Genetic , Plant Roots/growth & development , Quantitative Trait Loci , Time Factors
9.
Proc Natl Acad Sci U S A ; 107(24): 10848-53, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20534489

ABSTRACT

Variation in genome structure is an important source of human genetic polymorphism: It affects a large proportion of the genome and has a variety of phenotypic consequences relevant to health and disease. In spite of this, human genome structure variation is incompletely characterized due to a lack of approaches for discovering a broad range of structural variants in a global, comprehensive fashion. We addressed this gap with Optical Mapping, a high-throughput, high-resolution single-molecule system for studying genome structure. We used Optical Mapping to create genome-wide restriction maps of a complete hydatidiform mole and three lymphoblast-derived cell lines, and we validated the approach by demonstrating a strong concordance with existing methods. We also describe thousands of new variants with sizes ranging from kb to Mb.


Subject(s)
Genome, Human , Optical Restriction Mapping/methods , Algorithms , Cell Line , Cell Line, Tumor , Female , Genetic Variation , Genome-Wide Association Study , Humans , Hydatidiform Mole/genetics , Lymphocytes/metabolism , Optical Restriction Mapping/statistics & numerical data , Pregnancy , Uterine Neoplasms/genetics
10.
PLoS Genet ; 5(11): e1000711, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19936062

ABSTRACT

About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/ approximately 23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/ approximately 2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars.


Subject(s)
Genome, Plant/genetics , Zea mays/genetics , Algorithms , Base Sequence , Chromosomes, Artificial, Bacterial/genetics , Contig Mapping , Molecular Sequence Data , Optical Phenomena , Physical Chromosome Mapping , Sequence Alignment
11.
PLoS One ; 3(9): e3197, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18787707

ABSTRACT

BACKGROUND: Diverse bacterial genomes encode numerous small non-coding RNAs (sRNAs) that regulate myriad biological processes. While bioinformatic algorithms have proven effective in identifying sRNA-encoding loci, the lack of tools and infrastructure with which to execute these computationally demanding algorithms has limited their utilization. Genome-wide predictions of sRNA-encoding genes have been conducted in less than 3% of all sequenced bacterial strains, leading to critical gaps in current annotations. The relative paucity of genome-wide sRNA prediction represents a critical gap in current annotations of bacterial genomes and has limited examination of larger issues in sRNA biology, such as sRNA evolution. METHODOLOGY/PRINCIPAL FINDINGS: We have developed and deployed SIPHT, a high throughput computational tool that utilizes workflow management and distributed computing to effectively conduct kingdom-wide predictions and annotations of intergenic sRNA-encoding genes. Candidate sRNA-encoding loci are identified based on the presence of putative Rho-independent terminators downstream of conserved intergenic sequences, and each locus is annotated for several features, including conservation in other species, association with one of several transcription factor binding sites and homology to any of over 300 previously identified sRNAs and cis-regulatory RNA elements. Using SIPHT, we conducted searches for putative sRNA-encoding genes in all 932 bacterial replicons in the NCBI database. These searches yielded nearly 60% of previously confirmed sRNAs, hundreds of previously annotated cis-encoded regulatory RNA elements such as riboswitches, and over 45,000 novel candidate intergenic loci. CONCLUSIONS/SIGNIFICANCE: Candidate loci were identified across all branches of the bacterial evolutionary tree, suggesting a central and ubiquitous role for RNA-mediated regulation among bacterial species. Annotation of candidate loci by SIPHT provides clues into the potential biological function of thousands of previously confirmed and candidate regulatory RNAs and affords new insights into the evolution of bacterial riboregulation.


Subject(s)
Genome, Bacterial , Genomics/methods , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Algorithms , Bacteria/genetics , Binding Sites , Calibration , Computational Biology/methods , Evolution, Molecular , Genes, Bacterial , Open Reading Frames , Reproducibility of Results , Software
12.
Nucleic Acids Res ; 36(Database issue): D402-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17984079

ABSTRACT

The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pK(a) values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional (1)H and (13)C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions.


Subject(s)
Databases, Factual , Nuclear Magnetic Resonance, Biomolecular , Carbohydrates/chemistry , Internet , Ligands , Nucleic Acids/chemistry , Peptides/chemistry , Proteins/chemistry , User-Computer Interface
13.
BMC Genomics ; 8: 278, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17697381

ABSTRACT

BACKGROUND: Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data. RESULTS: To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety - including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project) and TIGR (The Institute for Genomic Research) genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies. CONCLUSION: Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of structural differences revealed by optical maps constructed from a broad range of rice subspecies and varieties.


Subject(s)
Genome, Plant , Optics and Photonics , Oryza/genetics , Sequence Analysis, DNA/methods , Centromere , Chromosomes, Plant , Telomere
14.
Proteins ; 59(4): 662-72, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15822098

ABSTRACT

State-of-the-art methods based on CNS and CYANA were used to recalculate the nuclear magnetic resonance (NMR) solution structures of 500+ proteins for which coordinates and NMR restraints are available from the Protein Data Bank. Curated restraints were obtained from the BioMagResBank FRED database. Although the original NMR structures were determined by various methods, they all were recalculated by CNS and CYANA and refined subsequently by restrained molecular dynamics (CNS) in a hydrated environment. We present an extensive analysis of the results, in terms of various quality indicators generated by PROCHECK and WHAT_CHECK. On average, the quality indicators for packing and Ramachandran appearance moved one standard deviation closer to the mean of the reference database. The structural quality of the recalculated structures is discussed in relation to various parameters, including number of restraints per residue, NOE completeness and positional root mean square deviation (RMSD). Correlations between pairs of these quality indicators were generally low; for example, there is a weak correlation between the number of restraints per residue and the Ramachandran appearance according to WHAT_CHECK (r = 0.31). The set of recalculated coordinates constitutes a unified database of protein structures in which potential user- and software-dependent biases have been kept as small as possible. The database can be used by the structural biology community for further development of calculation protocols, validation tools, structure-based statistical approaches and modeling. The RECOORD database of recalculated structures is publicly available from http://www.ebi.ac.uk/msd/recoord.


Subject(s)
Databases, Protein , Proteins/chemistry , Protein Conformation , Reproducibility of Results , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...