Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 25(1): e202300018, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37903732

ABSTRACT

The dehydrogenation and dehydration of isopropanol on the SrO and TiO2 terminated surfaces, of the SrTiO3 perovskite, is addressed by periodic DFT calculations in order to shed light on the involved mechanisms. The results show that the dehydrogenation occurs through a mechanism involving the dissociative adsorption of the alcohol on the SrO terminated surface, followed the nucleophilic attack of a hydride species on the previously adsorbed hydrogen atom to form molecular hydrogen and the corresponding carbonyl compound. The dehydration instead occurs by the molecular adsorption of the alcohol on the TiO2 terminated surface, followed by various possible E1 elimination pathways leading to the formation of the corresponding alkene and a water molecule. The article reports a thorough study on the involved mechanisms, including identification of the transition states and intermediates along the reaction paths, and evaluation of the respective activation barriers, as well. Thus, this article provides significant insights about the mechanisms of dehydrogenation and dehydration of isopropanol on the SrTiO3 , not reported earlier in literature. The calculated barrier energies are in good agreement with experimental values.

2.
Arch Biochem Biophys ; 727: 109343, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35779594

ABSTRACT

Diazabicyclooctanone inhibitors such as ETX2514 and avibactam have shown enhanced inhibitory performance to fight the antibiotic resistance developed by pathogens. However, avibactam is ineffective against Acinetobacter baumannii infections, unlike ETX2514. The molecular basis for this difference has not been tackled from a molecular approach, precluding the knowledge of relevant information. In this article, the mechanisms involved in the inhibition of OXA-24 by ETX2514 and avibactam are studied theoretically by hybrid QM/MM calculations. The results show that both inhibitors share the same inhibition mechanisms, comprising acylation a deacylation stages. The involved mechanisms include the same number of steps, transition states and intermediates; although they differ in the involved activation barriers. This difference accounts for the dissimilar inhibitory ability of both inhibitors. The molecular reason for this is the endocyclic double bond in the piperidine ring of ETX2514 increasing the ring strain and chemical reactivity on the N6 and C7 atoms, besides the methyl substituent, which enhance the hydrophobic character of the ring. Furthermore, Lys218 and the carboxylated Lys84 of ETX2514, play a crucial role in the mechanism by coordinating their protonation states in an on/off (protonated/deprotonated) manner, favoring the proton transference between the residues and the inhibitor.


Subject(s)
Anti-Bacterial Agents , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/chemistry
3.
J Comput Aided Mol Des ; 35(9): 943-952, 2021 09.
Article in English | MEDLINE | ID: mdl-34236545

ABSTRACT

Klebsiella pneumoniae carbapenemase (KPC-2) is the most commonly encountered class A ß-lactamase variant worldwide, which confer high-level resistance to most available antibiotics. In this article we address the issue by a combined approach involving molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations. The study contributes to improve the understanding, at molecular level, of the acylation and deacylation stages of avibactam involved in the inhibition of KPC-2. The results show that both mechanisms, acylation and deacylation, the reaction occur via the formation of a tetrahedral intermediate. The formation of this intermediate corresponds to the rate limiting stage. The activation barriers are 19.5 kcal/mol and 23.0 kcal/mol for the acylation and deacylation stages, respectively. The associated rate constants calculated, using the Eyring equation, are 1.2 × 10-1 and 3.9 × 10-4 (s-1). These values allow estimating a value of 3.3 × 10-3 for the inhibition constant, in good agreement with the experimental value.


Subject(s)
Anti-Bacterial Agents/chemistry , Azabicyclo Compounds/chemistry , Klebsiella pneumoniae/enzymology , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism , Acylation , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Catalytic Domain , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Thermodynamics , beta-Lactamase Inhibitors/pharmacology
4.
Biophys J ; 116(9): 1650-1657, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31010666

ABSTRACT

Avibactam is a non-ß-lactam ß-lactamase inhibitor for treating complicated urinary tract and respiratory infections caused by multidrug-resistant bacterial pathogens, a serious public health threat. Despite its importance, the release mechanism of avibactam from the enzyme-inhibitor complex has been scarcely studied from first principles, considering the total protein environment. This information at the molecular level is essential for the rational design of new antibiotics and inhibitors. In this article, we addressed the release of avibactam from the complex CTX-M-15 by means of molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. This study provides molecular information not available earlier, including exploration of the potential energy surfaces, characterization of the observed intermediate, and their critical points, as well. Our results show that unlike that observed in the acylation reaction, the residues Glu166 and Lys73 would be in their neutral forms. Release of avibactam follows a stepwise mechanism in which the first stage corresponds to the formation of a tetrahedral intermediate, whereas the second stage corresponds to the cleavage of the Ser70-C7 bond, mediated by Lys73, either directly or through Ser130.


Subject(s)
Azabicyclo Compounds/metabolism , Enzymes/metabolism , Molecular Dynamics Simulation , Acylation , Catalytic Domain , Enzymes/chemistry , Quantum Theory
5.
ACS Omega ; 4(26): 21954-21961, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31891074

ABSTRACT

Oxacillinases (OXAs) ß-lactamases are of special interest because of their capacity to hydrolyze antibacterial drugs such as cephalosporins and carbapenems, which are frequently used as the last option for the treatment of multidrug-resistant bacteria. Although the comprehension of the involved mechanisms at the atomic level is crucial for the rational design of new inhibitors and antibiotics, currently there is no study on the acylation/deacylation mechanisms of the OXA-24/avibactam complex from first principles; therefore, mechanistic details such as activation barriers, characterization of intermediates, and transition states are still uncertain. In this article, we address the deacylation of the OXA-24/avibactam complex by molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics computations. The study supplies mechanistic details not available so far, namely, topology of the potential energy surfaces, characterization of transition states and intermediates, and calculation of the respective activation barriers. The results show that the deacylation occurs via a mechanism of two stages; the first one involves the formation of a dianionic intermediate with a computed activation barrier of 24 kcal/mol. The second stage corresponds to the cleavage of the OS81-C bond promoted by the protonation of the OS81 atom by the carboxylated Lys84 and the concomitant formation of the C7-N6 bond, allowing the liberation of avibactam and recovery of the enzyme. The calculated activation barrier for the second stage is 13 kcal/mol. The structure of the intermediate, formed in the first stage, does not fulfill the characteristics of a tetrahedral intermediate. These results suggest that the recyclization of avibactam from the OXA-24/avibactam complex may occur without the emergence of tetrahedral intermediates, unlike that observed in the class A CTX-M-15.

6.
J Comput Chem ; 39(24): 1943-1948, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29707791

ABSTRACT

The inhibition mechanism of CTX-M-15 class A serine hydrolase by the inhibitor avibactam is addressed by a combined molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach postulating that the residue Ser70 is the sole reacting residue, that is, itself may play the role of the acid-base species required for the enzyme inhibition. Other residues located in the active site have key participation in the positioning of the inhibitor in the right conformation to favor the attack of Ser70, in addition to the stabilization of the transition state by electrostatic interactions with avibactam. The results validate the hypothesis and show that the reaction follows an asynchronous concerted mechanism, in which the nucleophilic attack of the hydroxyl oxygen of Ser70 precedes the protonation of the amidic nitrogen and ring opening. The calculated activation barrier is 16 kcal/mol in agreement with the experimental evidence. © 2018 Wiley Periodicals, Inc.


Subject(s)
Azabicyclo Compounds/pharmacology , Molecular Dynamics Simulation , Quantum Theory , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Azabicyclo Compounds/chemistry , beta-Lactamase Inhibitors/chemistry
7.
J Mol Model ; 23(7): 209, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28638992

ABSTRACT

The reaction between the antibiotic cefotaxime and the CTX-M-14 class A serine hydrolase is addressed from a theoretical point of view, by means of hybrid quantum mechanics/molecular mechanical (QM/MM) calculations, adopting a new approach that postulates that the residue Ser70 itself should play the role of the acid-base species required for the cefotaxime acylation. The proposed mechanism differs from earlier proposals existing in literature for other class A ß-lactamases. The results confirm the hypothesis, and show that the reaction should occur via a concerted mechanism in which the acylation of the lactam carbonyl carbon, protonation of the N7 lactam atom, and opening of the ß-lactam ring occurs simultaneously. Exploration of the potential energy surface shows three critical points, associated with reactants, transition state and product. The transition state is characterized by frequency, intrinsic reaction coordinate, atomic charge, and bond orders calculations. The calculated activation barrier is 20 kcal mol-1, and the reaction appears to be slightly endothermic by about 12 kcal mol-1. We conclude that this approach is feasible, and should be considered as an alternative mechanism or may exist in competition with others already published in the literature. This information should be useful for the design of novel antibiotics and ß-lactamase inhibitors. Graphical abstract Three-dimensional view of the potential energy surface of cefotaxime.


Subject(s)
Cefotaxime/chemistry , Molecular Dynamics Simulation , beta-Lactamases/chemistry , Amino Acid Substitution , Mutation, Missense , Quantum Theory , beta-Lactamases/genetics
8.
J Chem Inf Model ; 55(8): 1640-4, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26222831

ABSTRACT

In all ThDP-dependent enzymes, the catalytic cycle is initiated with the attack of the C2 atom of the ylide intermediate on the Cα atom of a pyruvate molecule to form the lactyl-ThDP (L-ThDP) intermediate. In this study, the reaction between the ylide intermediate and pyruvate leading to the formation of L-ThDP is addressed from a theoretical point of view. The study includes molecular dynamics, exploration of the potential energy surface by means of QM/MM calculations, and reactivity analysis on key centers. The results show that the reaction occurs via a concerted mechanism in which the carboligation and the proton transfers occur synchronically. It is also observed that during the reaction the protonation state of the N1' atom changes: the reaction starts with the ylide having the N1' atom deprotonated and reaches a transition state showing the N1' atom protonated. This conversion leads to the reaction path of minimum energy, with an activation energy of about 20 kcal mol(-1). On the other hand, it is also observed that the approaching distance between the pyruvate and the ylide, i.e., the Cα-C2 distance, plays a fundamental role in the reaction mechanism since it determines the nucleophilic character of key atoms of the ylide, which in turn trigger the elemental reactions of the mechanism.


Subject(s)
Acetolactate Synthase/metabolism , Pyruvic Acid/metabolism , Saccharomyces cerevisiae/enzymology , Thiamine Pyrophosphate/analogs & derivatives , Acetolactate Synthase/chemistry , Models, Molecular , Pyruvic Acid/chemistry , Quantum Theory , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Thermodynamics , Thiamine Pyrophosphate/chemistry , Thiamine Pyrophosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...