Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 58, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409076

ABSTRACT

Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1ß. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1ß release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.


Subject(s)
Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Ion Channels/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X7/metabolism
2.
BMC Genomics ; 24(1): 574, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759202

ABSTRACT

BACKGROUND: Super-enhancers (SEs), which activate genes involved in cell-type specificity, have mainly been defined as genomic regions with top-ranked enrichment(s) of histone H3 with acetylated K27 (H3K27ac) and/or transcription coactivator(s) including a bromodomain and extra-terminal domain (BET) family protein, BRD4. However, BRD4 preferentially binds to multi-acetylated histone H4, typically with acetylated K5 and K8 (H4K5acK8ac), leading us to hypothesize that SEs should be defined by high H4K5acK8ac enrichment at least as well as by that of H3K27ac. RESULTS: Here, we conducted genome-wide profiling of H4K5acK8ac and H3K27ac, BRD4 binding, and the transcriptome by using a BET inhibitor, JQ1, in three human glial cell lines. When SEs were defined as having the top ranks for H4K5acK8ac or H3K27ac signal, 43% of H4K5acK8ac-ranked SEs were distinct from H3K27ac-ranked SEs in a glioblastoma stem-like cell (GSC) line. CRISPR-Cas9-mediated deletion of the H4K5acK8ac-preferred SEs associated with MYCN and NFIC decreased the stem-like properties in GSCs. CONCLUSIONS: Collectively, our data highlights H4K5acK8ac's utility for identifying genes regulating cell-type specificity.


Subject(s)
Glioblastoma , Transcription Factors , Humans , Transcription Factors/metabolism , Histones/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Glioblastoma/genetics , Acetylation , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
3.
Neuropharmacology ; 224: 109330, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36375694

ABSTRACT

Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1ß, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1ß from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.


Subject(s)
Alzheimer Disease , Inflammasomes , Potassium Channels, Tandem Pore Domain , Animals , Humans , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Inflammasomes/metabolism , Microglia , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors
4.
Nucleic Acids Res ; 49(D1): D892-D898, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33211864

ABSTRACT

The Functional ANnoTation Of the Mammalian genome (FANTOM) Consortium has continued to provide extensive resources in the pursuit of understanding the transcriptome, and transcriptional regulation, of mammalian genomes for the last 20 years. To share these resources with the research community, the FANTOM web-interfaces and databases are being regularly updated, enhanced and expanded with new data types. In recent years, the FANTOM Consortium's efforts have been mainly focused on creating new non-coding RNA datasets and resources. The existing FANTOM5 human and mouse miRNA atlas was supplemented with rat, dog, and chicken datasets. The sixth (latest) edition of the FANTOM project was launched to assess the function of human long non-coding RNAs (lncRNAs). From its creation until 2020, FANTOM6 has contributed to the research community a large dataset generated from the knock-down of 285 lncRNAs in human dermal fibroblasts; this is followed with extensive expression profiling and cellular phenotyping. Other updates to the FANTOM resource includes the reprocessing of the miRNA and promoter atlases of human, mouse and chicken with the latest reference genome assemblies. To facilitate the use and accessibility of all above resources we further enhanced FANTOM data viewers and web interfaces. The updated FANTOM web resource is publicly available at https://fantom.gsc.riken.jp/.


Subject(s)
Molecular Sequence Annotation , RNA, Long Noncoding/genetics , Transcriptome/genetics , Animals , Binding Sites , Chromatin/metabolism , Drosophila/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Genome , Humans , Metadata , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , User-Computer Interface
5.
Genome Res ; 30(7): 951-961, 2020 07.
Article in English | MEDLINE | ID: mdl-32718981

ABSTRACT

Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.


Subject(s)
Evolution, Molecular , Transcriptome , Animals , Chickens/genetics , Dogs , Gene Expression Profiling , Gene Regulatory Networks , Humans , Mice , MicroRNAs/metabolism , Nucleotide Motifs , Principal Component Analysis , Promoter Regions, Genetic , Rats , Species Specificity , Transcription Factors/metabolism
6.
Nucleic Acids Res ; 47(D1): D752-D758, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30407557

ABSTRACT

The FANTOM web resource (http://fantom.gsc.riken.jp/) was developed to provide easy access to the data produced by the FANTOM project. It contains the most complete and comprehensive sets of actively transcribed enhancers and promoters in the human and mouse genomes. We determined the transcription activities of these regulatory elements by CAGE (Cap Analysis of Gene Expression) for both steady and dynamic cellular states in all major and some rare cell types, consecutive stages of differentiation and responses to stimuli. We have expanded the resource by employing different assays, such as RNA-seq, short RNA-seq and a paired-end protocol for CAGE (CAGEscan), to provide new angles to study the transcriptome. That yielded additional atlases of long noncoding RNAs, miRNAs and their promoters. We have also expanded the CAGE analysis to cover rat, dog, chicken, and macaque species for a limited number of cell types. The CAGE data obtained from human and mouse were reprocessed to make them available on the latest genome assemblies. Here, we report the recent updates of both data and interfaces in the FANTOM web resource.


Subject(s)
Databases, Genetic , Genome/genetics , Internet , Transcriptome/genetics , Animals , Cell Differentiation/genetics , Chickens/genetics , Dogs , Gene Expression Regulation/genetics , Genomics/trends , Humans , Mice , MicroRNAs/genetics , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , Rats , User-Computer Interface
7.
Sci Data ; 5(1): 2, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30538238

ABSTRACT

The authors regret that Luba M. Pardo was omitted in error from the author list of the original version of this Data Descriptor. This omission has now been corrected in the HTML and PDF versions. The authors also regret that Anemieke Rozemuller was omitted in error from the Acknowledgements of the original version of this Data Descriptor. This omission has now been corrected in the HTML and PDF versions.

8.
Epigenetics ; 13(4): 410-431, 2018.
Article in English | MEDLINE | ID: mdl-30080437

ABSTRACT

The bromodomain and extra-terminal domain (BET) proteins are promising drug targets for cancer and immune diseases. However, BET inhibition effects have been studied more in the context of bromodomain-containing protein 4 (BRD4) than BRD2, and the BET protein association to histone H4-hyperacetylated chromatin is not understood at the genome-wide level. Here, we report transcription start site (TSS)-resolution integrative analyses of ChIP-seq and transcriptome profiles in human non-small cell lung cancer (NSCLC) cell line H23. We show that di-acetylation at K5 and K8 of histone H4 (H4K5acK8ac) co-localizes with H3K27ac and BRD2 in the majority of active enhancers and promoters, where BRD2 has a stronger association with H4K5acK8ac than H3K27ac. Although BET inhibition by JQ1 led to complete reduction of BRD2 binding to chromatin, only local changes of H4K5acK8ac levels were observed, suggesting that recruitment of BRD2 does not influence global histone H4 hyperacetylation levels. This finding supports a model in which recruitment of BET proteins via histone H4 hyperacetylation is predominant over hyperacetylation of histone H4 by BET protein-associated acetyltransferases. In addition, we found that a remarkable number of BRD2-bound genes, including MYC and its downstream target genes, were transcriptionally upregulated upon JQ1 treatment. Using BRD2-enriched sites and transcriptional activity analysis, we identified candidate transcription factors potentially involved in the JQ1 response in BRD2-dependent and -independent manner.


Subject(s)
Azepines/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Histones/chemistry , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/metabolism , Triazoles/pharmacology , Acetylation/drug effects , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Chromatin/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histones/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Models, Molecular , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors , Transcription Initiation Site/drug effects
9.
PLoS Comput Biol ; 14(3): e1005934, 2018 03.
Article in English | MEDLINE | ID: mdl-29494619

ABSTRACT

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.


Subject(s)
Genetic Predisposition to Disease/genetics , Genomics/methods , Promoter Regions, Genetic/genetics , Crohn Disease/genetics , Databases, Genetic , Gene Expression Profiling , Humans , Transcriptome/genetics
10.
Sci Data ; 4: 170173, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29182598

ABSTRACT

The promoter landscape of several non-human model organisms is far from complete. As a part of FANTOM5 data collection, we generated 13 profiles of transcription initiation activities in dog and rat aortic smooth muscle cells, mesenchymal stem cells and hepatocytes by employing CAGE (Cap Analysis of Gene Expression) technology combined with single molecule sequencing. Our analyses show that the CAGE profiles recapitulate known transcription start sites (TSSs) consistently, in addition to uncover novel TSSs. Our dataset can be thus used with high confidence to support gene annotation in dog and rat species. We identified 28,497 and 23,147 CAGE peaks, or promoter regions, for rat and dog respectively, and associated them to known genes. This approach could be seen as a standard method for improvement of existing gene models, as well as discovery of novel genes. Given that the FANTOM5 data collection includes dog and rat matched cell types in human and mouse as well, this data would also be useful for cross-species studies.


Subject(s)
Transcription, Genetic , Animals , Dogs , Molecular Sequence Annotation , Promoter Regions, Genetic , Rats , Transcription Initiation Site
11.
Sci Data ; 4: 170163, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29087374

ABSTRACT

Rhesus macaque was the second non-human primate whose genome has been fully sequenced and is one of the most used model organisms to study human biology and disease, thanks to the close evolutionary relationship between the two species. But compared to human, where several previously unknown RNAs have been uncovered, the macaque transcriptome is less studied. Publicly available RNA expression resources for macaque are limited, even for brain, which is highly relevant to study human cognitive abilities. In an effort to complement those resources, FANTOM5 profiled 15 distinct anatomical regions of the aged macaque central nervous system using Cap Analysis of Gene Expression, a high-resolution, annotation-independent technology that allows monitoring of transcription initiation events with high accuracy. We identified 25,869 CAGE peaks, representing bona fide promoters. For each peak we provide detailed annotation, expanding the landscape of 'known' macaque genes, and we show concrete examples on how to use the resulting data. We believe this data represents a useful resource to understand the central nervous system in macaque.


Subject(s)
Central Nervous System , Macaca mulatta , Transcription Initiation Site , Animals , Central Nervous System/anatomy & histology , Transcriptome
12.
Sci Data ; 4: 170147, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28972578

ABSTRACT

The FANTOM5 expression atlas is a quantitative measurement of the activity of nearly 200,000 promoter regions across nearly 2,000 different human primary cells, tissue types and cell lines. Generation of this atlas was made possible by the use of CAGE, an experimental approach to localise transcription start sites at single-nucleotide resolution by sequencing the 5' ends of capped RNAs after their conversion to cDNAs. While 50% of CAGE-defined promoter regions could be confidently associated to adjacent transcriptional units, nearly 100,000 promoter regions remained gene-orphan. To address this, we used the CAGEscan method, in which random-primed 5'-cDNAs are paired-end sequenced. Pairs starting in the same region are assembled in transcript models called CAGEscan clusters. Here, we present the production and quality control of CAGEscan libraries from 56 FANTOM5 RNA sources, which enhances the FANTOM5 expression atlas by providing experimental evidence associating core promoter regions with their cognate transcripts.


Subject(s)
Promoter Regions, Genetic , Transcription, Genetic , DNA, Complementary , Humans , Organ Specificity , Sequence Analysis, RNA , Transcription Initiation Site
13.
PLoS Biol ; 15(9): e2002887, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28873399

ABSTRACT

Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.


Subject(s)
Embryonic Development , Genome-Wide Association Study , Transcription Initiation Site , Animals , Biological Evolution , Chick Embryo , Clustered Regularly Interspaced Short Palindromic Repeats
14.
Sci Data ; 4: 170107, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28850105

ABSTRACT

The FANTOM5 consortium described the promoter-level expression atlas of human and mouse by using CAGE (Cap Analysis of Gene Expression) with single molecule sequencing. In the original publications, GRCh37/hg19 and NCBI37/mm9 assemblies were used as the reference genomes of human and mouse respectively; later, the Genome Reference Consortium released newer genome assemblies GRCh38/hg38 and GRCm38/mm10. To increase the utility of the atlas in forthcoming researches, we reprocessed the data to make them available on the recent genome assemblies. The data include observed frequencies of transcription starting sites (TSSs) based on the realignment of CAGE reads, and TSS peaks that are converted from those based on the previous reference. Annotations of the peak names were also updated based on the latest public databases. The reprocessed results enable us to examine frequencies of transcription initiations on the recent genome assemblies and to refer promoters with updated information across the genome assemblies consistently.


Subject(s)
Genome , Promoter Regions, Genetic , Animals , Humans , Mice , Transcription Initiation Site
15.
Nat Biotechnol ; 35(9): 872-878, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28829439

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.


Subject(s)
Gene Expression Profiling/methods , MicroRNAs/genetics , Molecular Sequence Annotation , Promoter Regions, Genetic/genetics , Animals , Cells, Cultured , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Mice , MicroRNAs/metabolism
16.
Methods Mol Biol ; 1650: 101-109, 2017.
Article in English | MEDLINE | ID: mdl-28809016

ABSTRACT

Cap analysis of gene expression (CAGE) is a convenient approach for genome-wide identification of promoter regions at single base-pair resolution level and accurate expression estimation of the corresponding transcripts. Depending on the initial biomaterial amount and sequencing technology, different computational pipelines for data processing are available, as well as variations of the CAGE protocol that improve sensitivity and accuracy. Therefore, this chapter elucidates the key steps of sample preparation, sequencing, and data analysis via an example of a promoter expression estimation study in chicken development. We also describe the applicability of this approach for studying other avian and reptilian species.


Subject(s)
Chickens/growth & development , Chickens/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Promoter Regions, Genetic , Sequence Analysis, DNA/methods , Transcription Initiation Site , Animals
17.
Mol Cancer Res ; 15(10): 1354-1365, 2017 10.
Article in English | MEDLINE | ID: mdl-28698358

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of cancer driver mutations have been identified; however, relevant epigenetic regulation involved in tumorigenesis has only been fragmentarily analyzed. Epigenetically regulated genes have a great theranostic potential, especially in tumors with no apparent driver mutations. Here, epigenetically regulated genes were identified in lung cancer by an integrative analysis of promoter-level expression profiles from Cap Analysis of Gene Expression (CAGE) of 16 non-small cell lung cancer (NSCLC) cell lines and 16 normal lung primary cell specimens with DNA methylation data of 69 NSCLC cell lines and 6 normal lung epithelial cells. A core set of 49 coding genes and 10 long noncoding RNAs (lncRNA), which are upregulated in NSCLC cell lines due to promoter hypomethylation, was uncovered. Twenty-two epigenetically regulated genes were validated (upregulated genes with hypomethylated promoters) in the adenocarcinoma and squamous cell cancer subtypes of lung cancer using The Cancer Genome Atlas data. Furthermore, it was demonstrated that multiple copies of the REP522 DNA repeat family are prominently upregulated due to hypomethylation in NSCLC cell lines, which leads to cancer-specific expression of lncRNAs, such as RP1-90G24.10, AL022344.4, and PCAT7. Finally, Myeloma Overexpressed (MYEOV) was identified as the most promising candidate. Functional studies demonstrated that MYEOV promotes cell proliferation, survival, and invasion. Moreover, high MYEOV expression levels were associated with poor prognosis.Implications: This report identifies a robust list of 22 candidate driver genes that are epigenetically regulated in lung cancer; such genes may complement the known mutational drivers.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/15/10/1354/F1.large.jpg Mol Cancer Res; 15(10); 1354-65. ©2017 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Gene Regulatory Networks , Lung Neoplasms/genetics , RNA, Long Noncoding/genetics , A549 Cells , Cell Line, Tumor , Cell Proliferation , Cell Survival , Databases, Genetic , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans
18.
Nature ; 543(7644): 199-204, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28241135

ABSTRACT

Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.


Subject(s)
Databases, Genetic , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , Transcriptome/genetics , Cells, Cultured , Conserved Sequence/genetics , Datasets as Topic , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Genome, Human/genetics , Genome-Wide Association Study , Genomics , Humans , Internet , Molecular Sequence Annotation , Organ Specificity/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics , RNA Stability , RNA, Messenger/genetics
19.
Nucleic Acids Res ; 45(D1): D737-D743, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27794045

ABSTRACT

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.


Subject(s)
Databases, Genetic , Gene Expression Profiling/methods , Genomics/methods , Mammals/genetics , Software , Web Browser , Animals , Computational Biology , Humans , Search Engine
20.
Sci Rep ; 6: 33666, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27645561

ABSTRACT

Periodontitis is affecting over half of the adult population, and represents a major public health problem. Previously, we isolated a subset of gingival fibroblasts (GFs) from periodontitis patients, designated as periodontitis-associated fibroblasts (PAFs), which were highly capable of collagen degradation. To elucidate their molecular profiles, GFs isolated form healthy and periodontitis-affected gingival tissues were analyzed by CAGE-seq and integrated with the FANTOM5 atlas. GFs from healthy gingival tissues displayed distinctive patterns of CAGE profiles as compared to fibroblasts from other organ sites and characterized by specific expression of developmentally important transcription factors such as BARX1, PAX9, LHX8, and DLX5. In addition, a novel long non-coding RNA associated with LHX8 was described. Furthermore, we identified DLX5 regulating expression of the long variant of RUNX2 transcript, which was specifically active in GFs but not in their periodontitis-affected counterparts. Knockdown of these factors in GFs resulted in altered expression of extracellular matrix (ECM) components. These results indicate activation of DLX5 and RUNX2 via its distal promoter represents a unique feature of GFs, and is important for ECM regulation. Down-regulation of these transcription factors in PAFs could be associated with their property to degrade collagen, which may impact on the process of periodontitis.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Periodontitis/genetics , RNA Isoforms , Transcription Factors/genetics , Transcriptome , Cells, Cultured , Cluster Analysis , Gene Expression Regulation , Gingiva/metabolism , Gingiva/pathology , Humans , Organ Specificity , Periodontitis/pathology , Promoter Regions, Genetic , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...