Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pituitary ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096452

ABSTRACT

The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease-causing mutations and phenocopying human bone disease in rodents. Notably, using genetically-modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle-stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid-stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid-induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.

2.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963696

ABSTRACT

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.


Subject(s)
Bone and Bones , Brain , Sympathetic Nervous System , Animals , Sympathetic Nervous System/physiology , Mice , Brain/physiology , Brain/metabolism , Bone and Bones/innervation , Bone and Bones/physiology , Herpesvirus 1, Suid/physiology
3.
Article in English | MEDLINE | ID: mdl-38888252

ABSTRACT

CONTEXT: Previous studies have shown that the prevalence of polycystic ovary syndrome (PCOS) may vary according to race/ethnicity, although few studies have assessed women of different ethnicities who live in similar geographic and socio-economic conditions. OBJECTIVE: To determine the prevalence of PCOS in an unselected multiethnic population of premenopausal women. DESIGN: A multicenter prospective cross-sectional study. SETTINGS: The main regional employers of Irkutsk Region and the Buryat Republic, Russia. PARTICIPANTS: During 2016-19, 1398 premenopausal women underwent a history and physical exam, pelvic ultrasound, and testing during a mandatory annual employment-related health assessment. MAIN OUTCOME MEASURES: PCOS prevalence, overall and by ethnicity in a large medically unbiased population, including Caucasian (White), Mongolic or Asian (Buryat), and mixed ethnicity individuals, living in similar geographic and socio-economic conditions for centuries. RESULTS: PCOS was diagnosed in 165/1134 (14.5%) women who had a complete evaluation for PCOS. Based on the probabilities for PCOS by clinical presentation observed in the cohort of women who had a complete evaluation we also estimated the weight-adjusted prevalence of PCOS in 264 women with an incomplete evaluation: 46.2 or 17.5%. Consequently, the total prevalence of PCOS in the population was 15.1%, higher among Caucasians and women of Mixed ethnicity compared to Asians (16.0% and 21.8% vs. 10.8%, pz <0.05). CONCLUSIONS: We observed a 15.1% prevalence of PCOS in our medically unbiased population of premenopausal women. In this population of Siberian premenopausal women of Caucasian, Asian and Mixed ethnicity living in similar geographic and socio-economic conditions, the prevalence was higher in Caucasian or Mixed than Asian women. These data highlight the need to assess carefully ethnic-dependent differences in the frequency and clinical manifestation of PCOS.

4.
Diagnostics (Basel) ; 14(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611586

ABSTRACT

Polycystic ovary syndrome (PCOS) is a highly prevalent disorder in women, and its diagnosis rests on three principal features: ovulatory/menstrual dysfunction, clinical and/or biochemical hyperandrogenism, and polycystic ovarian morphology (PCOM). Currently, data on age- and ethnicity-dependent features of PCOM remain insufficient. We aimed to estimate ethnicity- and age-dependent differences in ovarian volume (OV) and follicle number per ovary (FNPO) in a healthy, medically unbiased population of Caucasian and Asian premenopausal women, who participated in the cross-sectional Eastern Siberia PCOS epidemiology and phenotype (ESPEP) study (ClinicalTrials.gov ID: NCT05194384) in 2016-2019. The study population consisted of 408 non-hirsute, normo-androgenic, eumenorrheic premenopausal women aged 18-44 years. All participants underwent a uniform evaluation including a review of their medical history and a physical examination, blood sampling, and pelvic ultrasonography. The statistical analysis included non-parametric tests and the estimation of the upper normal limits (UNLs) by 98th percentiles for OV and FNPO. In the total study population, the upper OV percentiles did not differ by ethnicity or age group. By contrast, the UNL of FNPO was higher in Caucasian women than in Asian women, and women aged <35 years demonstrated a higher UNL of FNPO compared to older women. In summary, these data suggest that the estimation of FNPO, but not OV, should take into account the ethnicity and age of the individual in estimating the presence of PCOM.

5.
J Endocrinol ; 262(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579764

ABSTRACT

The pituitary gland orchestrates multiple endocrine organs by secreting tropic hormones, and therefore plays a significant role in a myriad of physiological processes, including skeletal modeling and remodeling, fat and glucose metabolism, and cognition. Expression of receptors for each pituitary hormone and the hormone itself in the skeleton, fat, immune cells, and the brain suggest that their role is much broader than the traditionally attributed functions. FSH, believed solely to regulate gonadal function is also involved in fat and bone metabolism, as well as in cognition. Our emerging understanding of nonreproductive functions of FSH, thus, opens potential therapeutic opportunities to address detrimental health consequences during and after menopause, namely, osteoporosis, obesity, and dementia. In this review, we outline current understanding of the cross-talk between the pituitary, bone, adipose tissue, and brain through FSH. Preclinical evidence from genetic and pharmacologic interventions in rodent models, and human data from population-based observations, genetic studies, and a small number of interventional studies provide compelling evidence for independent functions of FSH in bone loss, fat gain, and congnitive impairment.


Subject(s)
Bone and Bones , Brain , Follicle Stimulating Hormone , Humans , Brain/metabolism , Brain/physiology , Animals , Follicle Stimulating Hormone/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Adipose Tissue/metabolism , Adipose Tissue/physiology , Pituitary Gland/metabolism , Pituitary Gland/physiology , Osteoporosis/metabolism
6.
Res Sq ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463956

ABSTRACT

Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17ß-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid ß40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.

7.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370676

ABSTRACT

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow--these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.

SELECTION OF CITATIONS
SEARCH DETAIL