Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Neurology ; 103(3): e209585, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38959435

ABSTRACT

BACKGROUND AND OBJECTIVES: Identification of fluid biomarkers for progressive supranuclear palsy (PSP) is critical to enhance therapeutic development. We implemented unbiased DNA aptamer (SOMAmer) proteomics to identify novel CSF PSP biomarkers. METHODS: This is a cross-sectional study in original (18 clinically diagnosed PSP-Richardson syndrome [PSP-RS], 28 cognitively healthy controls]), validation (23 PSP-RS, 26 healthy controls), and neuropathology-confirmed (21 PSP, 52 non-PSP frontotemporal lobar degeneration) cohorts. Participants were recruited through the University of California, San Francisco, and the 4-Repeat Neuroimaging Initiative. The original and neuropathology cohorts were analyzed with the SomaScan platform version 3.0 (5026-plex) and the validation cohort with version 4.1 (7595-plex). Clinical severity was measured with the PSP Rating Scale (PSPRS). CSF proteomic data were analyzed to identify differentially expressed targets, implicated biological pathways using enrichment and weighted consensus gene coexpression analyses, diagnostic value of top targets with receiver-operating characteristic curves, and associations with disease severity with linear regressions. RESULTS: A total of 136 participants were included (median age 70.6 ± 8 years, 68 [50%] women). One hundred fifty-five of 5,026 (3.1%), 959 of 7,595 (12.6%), and 321 of 5,026 (6.3%) SOMAmers were differentially expressed in PSP compared with controls in original, validation, and neuropathology-confirmed cohorts, with most of the SOMAmers showing reduced signal (83.1%, 95.1%, and 73.2%, respectively). Three coexpression modules were associated with PSP across cohorts: (1) synaptic function/JAK-STAT (ß = -0.044, corrected p = 0.002), (2) vesicle cytoskeletal trafficking (ß = 0.039, p = 0.007), and (3) cytokine-cytokine receptor interaction (ß = -0.032, p = 0.035) pathways. Axon guidance was the top dysregulated pathway in PSP in original (strength = 1.71, p < 0.001), validation (strength = 0.84, p < 0.001), and neuropathology-confirmed (strength = 0.78, p < 0.001) cohorts. A panel of axon guidance pathway proteins discriminated between PSP and controls in original (area under the curve [AUC] = 0.924), validation (AUC = 0.815), and neuropathology-confirmed (AUC = 0.932) cohorts. Two inflammatory proteins, galectin-10 and cytotoxic T lymphocyte-associated protein-4, correlated with PSPRS scores across cohorts. DISCUSSION: Axon guidance pathway proteins and several other molecular pathways are downregulated in PSP, compared with controls. Proteins in these pathways may be useful targets for biomarker or therapeutic development.


Subject(s)
Biomarkers , Proteomics , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/cerebrospinal fluid , Supranuclear Palsy, Progressive/diagnosis , Female , Male , Aged , Proteomics/methods , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Middle Aged , Cohort Studies , Aged, 80 and over
2.
Ann Neurol ; 96(1): 99-109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578117

ABSTRACT

OBJECTIVES: To evaluate the effect of Alzheimer's disease (AD) -related biomarker change on clinical features, brain atrophy and functional connectivity of patients with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). METHODS: Data from patients with a clinical diagnosis of CBS, PSP, and AD and healthy controls were obtained from the 4-R-Tauopathy Neuroimaging Initiative 1 and 2, the Alzheimer's Disease Neuroimaging Initiative, and a local cohort from the Toronto Western Hospital. Patients with CBS and PSP were divided into AD-positive (CBS/PSP-AD) and AD-negative (CBS/PSP-noAD) groups based on fluid biomarkers and amyloid PET scans. Cognitive, motor, and depression scores; AD fluid biomarkers (cerebrospinal p-tau, t-tau, and amyloid-beta, and plasma ptau-217); and neuroimaging data (amyloid PET, MRI and fMRI) were collected. Clinical features, whole-brain gray matter volume and functional networks connectivity were compared across groups. RESULTS: Data were analyzed from 87 CBS/PSP-noAD and 23 CBS/PSP-AD, 18 AD, and 30 healthy controls. CBS/PSP-noAD showed worse performance in comparison to CBS/PSP-AD in the PSPRS [mean(SD): 34.8(15.8) vs 23.3(11.6)] and the UPDRS scores [mean(SD): 34.2(17.0) vs 21.8(13.3)]. CBS/PSP-AD demonstrated atrophy in AD signature areas and brainstem, while CBS/PSP-noAD patients displayed atrophy in frontal and temporal areas, globus pallidus, and brainstem compared to healthy controls. The default mode network showed greatest disconnection in CBS/PSP-AD compared with CBS/PSP-no AD and controls. The thalamic network connectivity was most affected in CBS/PSP-noAD. INTERPRETATION: AD biomarker positivity may modulate the clinical presentation of CBS/PSP, with evidence of distinctive structural and functional brain changes associated with the AD pathology/co-pathology. ANN NEUROL 2024;96:99-109.


Subject(s)
Alzheimer Disease , Biomarkers , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Male , Aged , Biomarkers/blood , Middle Aged , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Positron-Emission Tomography , Magnetic Resonance Imaging , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Corticobasal Degeneration/diagnostic imaging , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology
3.
Res Sq ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585969

ABSTRACT

The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics (> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39 noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.

4.
Alzheimers Dement ; 20(5): 3334-3341, 2024 May.
Article in English | MEDLINE | ID: mdl-38539061

ABSTRACT

INTRODUCTION: Lewy body disease (LBD) is a common primary or co-pathology in neurodegenerative syndromes. An alpha-synuclein seed amplification assay (αSyn-SAA) is clinically available, but clinical performance, especially lower sensitivity in amygdala-predominant cases, is not well understood. METHODS: Antemortem CSF from neuropathology-confirmed LBD cases was tested with αSyn-SAA (N = 56). Diagnostic performance and clinicopathological correlations were examined. RESULTS: Similar to prior reports, sensitivity was 100% for diffuse and transitional LBD (9/9), and overall specificity was 96.3% (26/27). Sensitivity was lower in amygdala-predominant (6/14, 42.8%) and brainstem-predominant LBD (1/6, 16.7%), but early spread outside these regions (without meeting criteria for higher stage) was more common in αSyn-SAA-positive cases (6/7, 85.7%) than negative (2/13, 15.4%). DISCUSSION: In this behavioral neurology cohort, αSyn-SAA had excellent diagnostic performance for cortical LBD. In amygdala- and brainstem-predominant cases, sensitivity was lower, but positivity was associated with anatomical spread, suggesting αSyn-SAA detects early LBD progression in these cohorts. HIGHLIGHTS: A cerebrospinal fluid alpha-synuclein assay detects cortical LBD with high sensitivity/specificity. Positivity in prodromal stages of LBD was associated with early cortical spread. The assay provides precision diagnosis of LBD that could support clinical trials. The assay can also identify LBD co-pathology, which may impact treatment responses.


Subject(s)
Autopsy , Lewy Body Disease , Sensitivity and Specificity , alpha-Synuclein , Humans , alpha-Synuclein/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/pathology , Female , Male , Aged , Cohort Studies , Amygdala/pathology , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Middle Aged
5.
J Nucl Med ; 64(12): 1980-1989, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37918868

ABSTRACT

Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-ß (Aß) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45,…50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aß-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aß-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.


Subject(s)
Alzheimer Disease , Aphasia, Primary Progressive , Corticobasal Degeneration , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Supranuclear Palsy, Progressive , Humans , Alzheimer Disease/metabolism , Positron-Emission Tomography/methods , Frontotemporal Lobar Degeneration/pathology , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism
8.
JAMA Neurol ; 80(5): 495-505, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37010841

ABSTRACT

Importance: Plasma phosphorylated tau217 (p-tau217), a biomarker of Alzheimer disease (AD), is of special interest in corticobasal syndrome (CBS) because autopsy studies have revealed AD is the driving neuropathology in up to 40% of cases. This differentiates CBS from other 4-repeat tauopathy (4RT)-associated syndromes, such as progressive supranuclear palsy Richardson syndrome (PSP-RS) and nonfluent primary progressive aphasia (nfvPPA), where underlying frontotemporal lobar degeneration (FTLD) is typically the primary neuropathology. Objective: To validate plasma p-tau217 against positron emission tomography (PET) in 4RT-associated syndromes, especially CBS. Design, Setting, and Participants: This multicohort study with 6, 12, and 24-month follow-up recruited adult participants between January 2011 and September 2020 from 8 tertiary care centers in the 4RT Neuroimaging Initiative (4RTNI). All participants with CBS (n = 113), PSP-RS (n = 121), and nfvPPA (n = 39) were included; other diagnoses were excluded due to rarity (n = 29). Individuals with PET-confirmed AD (n = 54) and PET-negative cognitively normal control individuals (n = 59) were evaluated at University of California San Francisco. Operators were blinded to the cohort. Main Outcome and Measures: Plasma p-tau217, measured by Meso Scale Discovery electrochemiluminescence, was validated against amyloid-ß (Aß) and flortaucipir (FTP) PET. Imaging analyses used voxel-based morphometry and bayesian linear mixed-effects modeling. Clinical biomarker associations were evaluated using longitudinal mixed-effect modeling. Results: Of 386 participants, 199 (52%) were female, and the mean (SD) age was 68 (8) years. Plasma p-tau217 was elevated in patients with CBS with positive Aß PET results (mean [SD], 0.57 [0.43] pg/mL) or FTP PET (mean [SD], 0.75 [0.30] pg/mL) to concentrations comparable to control individuals with AD (mean [SD], 0.72 [0.37]), whereas PSP-RS and nfvPPA showed no increase relative to control. Within CBS, p-tau217 had excellent diagnostic performance with area under the receiver operating characteristic curve (AUC) for Aß PET of 0.87 (95% CI, 0.76-0.98; P < .001) and FTP PET of 0.93 (95% CI, 0.83-1.00; P < .001). At baseline, individuals with CBS-AD (n = 12), defined by a PET-validated plasma p-tau217 cutoff 0.25 pg/mL or greater, had increased temporoparietal atrophy at baseline compared to individuals with CBS-FTLD (n = 39), whereas longitudinally, individuals with CBS-FTLD had faster brainstem atrophy rates. Individuals with CBS-FTLD also progressed more rapidly on a modified version of the PSP Rating Scale than those with CBS-AD (mean [SD], 3.5 [0.5] vs 0.8 [0.8] points/year; P = .005). Conclusions and Relevance: In this cohort study, plasma p-tau217 had excellent diagnostic performance for identifying Aß or FTP PET positivity within CBS with likely underlying AD pathology. Plasma P-tau217 may be a useful and inexpensive biomarker to select patients for CBS clinical trials.


Subject(s)
Alzheimer Disease , Corticobasal Degeneration , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Supranuclear Palsy, Progressive , Adult , Humans , Female , Aged , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Cohort Studies , Bayes Theorem , Amyloid beta-Peptides , Frontotemporal Lobar Degeneration/pathology , Positron-Emission Tomography , Biomarkers , Atrophy , tau Proteins
9.
J Neurol Neurosurg Psychiatry ; 94(7): 541-549, 2023 07.
Article in English | MEDLINE | ID: mdl-36977552

ABSTRACT

BACKGROUND: Measuring systemic inflammatory markers may improve clinical prognosis and help identify targetable pathways for treatment in patients with autosomal dominant forms of frontotemporal lobar degeneration (FTLD). METHODS: We measured plasma concentrations of IL-6, TNFα and YKL-40 in pathogenic variant carriers (MAPT, C9orf72, GRN) and non-carrier family members enrolled in the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration consortium. We evaluated associations between baseline plasma inflammation and rate of clinical and neuroimaging changes (linear mixed effects models with standardised (z) outcomes). We compared inflammation between asymptomatic carriers who remained clinically normal ('asymptomatic non-converters') and those who became symptomatic ('asymptomatic converters') using area under the curve analyses. Discrimination accuracy was compared with that of plasma neurofilament light chain (NfL). RESULTS: We studied 394 participants (non-carriers=143, C9orf72=117, GRN=62, MAPT=72). In MAPT, higher TNFα was associated with faster functional decline (B=0.12 (0.02, 0.22), p=0.02) and temporal lobe atrophy. In C9orf72, higher TNFα was associated with faster functional decline (B=0.09 (0.03, 0.16), p=0.006) and cognitive decline (B=-0.16 (-0.22, -0.10), p<0.001), while higher IL-6 was associated with faster functional decline (B=0.12 (0.03, 0.21), p=0.01). TNFα was higher in asymptomatic converters than non-converters (ß=0.29 (0.09, 0.48), p=0.004) and improved discriminability compared with plasma NfL alone (ΔR2=0.16, p=0.007; NfL: OR=1.4 (1.03, 1.9), p=0.03; TNFα: OR=7.7 (1.7, 31.7), p=0.007). CONCLUSIONS: Systemic proinflammatory protein measurement, particularly TNFα, may improve clinical prognosis in autosomal dominant FTLD pathogenic variant carriers who are not yet exhibiting severe impairment. Integrating TNFα with markers of neuronal dysfunction like NfL could optimise detection of impending symptom conversion in asymptomatic pathogenic variant carriers and may help personalise therapeutic approaches.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , C9orf72 Protein/genetics , Disease Progression , Frontotemporal Dementia/diagnosis , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Inflammation , Interleukin-6 , Mutation , tau Proteins/genetics , Tumor Necrosis Factor-alpha
10.
Nat Med ; 28(10): 2194-2206, 2022 10.
Article in English | MEDLINE | ID: mdl-36138153

ABSTRACT

Unlike familial Alzheimer's disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.


Subject(s)
Frontotemporal Dementia , Biomarkers , C9orf72 Protein/genetics , Clinical Trials as Topic , Disease Progression , Frontotemporal Dementia/genetics , Humans , Mutation/genetics , tau Proteins/genetics
11.
Front Neurol ; 13: 909944, 2022.
Article in English | MEDLINE | ID: mdl-35812083

ABSTRACT

CSF1R-related leukoencephalopathy is an autosomal dominant neurodegenerative disease caused by mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R). Several studies have found that hematogenic stem cell transplantation is an effective disease modifying therapy however the literature regarding prodromal and early symptoms CSF1R-related leukoencephalopathy is limited. We describe a 63-year-old patient with 4 years of repetitive scratching and skin picking behavior followed by 10 years of progressive behavioral, cognitive, and motor decline in a pattern suggesting behavioral variant of frontotemporal dementia. Brain MRI demonstrated prominent frontal and parietal atrophy accompanied by underlying bilateral patchy white matter hyperintensities sparing the U fibers and cavum septum pellucidum. Whole-exome sequencing revealed a novel, predicted deleterious missense variant in a highly conserved amino acid in the tyrosine kinase domain of CSF1R (p.Gly872Arg). Given this evidence and the characteristic clinical and radiological findings this novel variant was classified as likely pathogenic according to the American College of Medical Genetics standard guidelines. Detailed description of the prodromal scratching and skin picking behavior and possible underlying mechanisms in this case furthers knowledge about early manifestations of CSF1R-related leukoencephalopathy with the hope that early detection and timely administration of disease modifying therapies becomes possible.

12.
Neurology ; 2022 May 18.
Article in English | MEDLINE | ID: mdl-35584922

ABSTRACT

BACKGROUND AND OBJECTIVES: Changes in social behavior are common symptoms of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease syndromes. For early identification of individual patients and differential diagnosis, sensitive clinical measures are required that are able to assess patterns of behaviors and detect syndromic differences in both asymptomatic and symptomatic stages. We investigated whether the examiner-based Social Behavior Observer Checklist (SBOCL) is sensitive to early behavior changes and reflects disease severity within and between neurodegenerative syndromes. METHODS: Asymptomatic individuals and neurodegenerative disease patients were selected from the multisite ALLFTD cohort study. In a sample of participants with at least one timepoint of SBOCL data, we investigated whether the Disorganized, Reactive, and Insensitive subscales of the SBOCL change as a function of disease stage within and between these syndromes. In a longitudinal subsample with both SBOCL and neuroimaging data, we examined whether change over time on each subscale corresponds to progressive gray matter atrophy. RESULTS: 1082 FTLD mutation carriers and non-carriers were enrolled (282 asymptomatic, 341 behavioral variant frontotemporal dementia, 114 semantic and 95 non-fluent variant primary progressive aphasia, 137 progressive supranuclear palsy, 113 Alzheimer's clinical syndrome). The Disorganized score increased between asymptomatic to very mild (p=0.016, estimate=-1.10, 95%CI=[-1.99, -0.22]), very mild to mild (p=0.013, -1.17, [-2.08, -0.26]), and mild to moderate/severe (p<0.001, -2.00, [-2.55, -1.45]) disease stages in behavioral variant frontotemporal dementia regardless of mutation status. Asymptomatic GRN pathogenic gene variant carriers showed more Reactive behaviors (preoccupation with time: p=0.001, 1.11, [1.06, 1.16]; self-consciousness: p=0.003, 1.77, [1.52, 2.01]) than asymptomatic non-carriers (1.01, [0.98, 1.03]; 1.31, [1.20, 1.41]). Insensitive score increased to a clinically abnormal level in advanced stages of behavioral variant frontotemporal dementia (p=0.003, -0.73, [-1.18, -0.29]). Higher scores on each subscale corresponded with higher caregiver burden (p<0.001). Greater change over time corresponded to greater fronto-subcortical atrophy in the semantic-appraisal and fronto-parietal intrinsically connected networks. DISCUSSION: The SBOCL is sensitive to early symptoms and reflects disease severity, with some evidence for progression across asymptomatic and symptomatic stages of FTLD syndromes; thus it may hold promise for early measurement and monitoring of behavioral symptoms in clinical practice and treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that the Social Behavior Observer Checklist is sensitive to early behavioral changes in FTLD pathogenic variants and early symptomatic individuals in a highly educated patient cohort.

13.
Neurology ; 98(11): e1137-e1150, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35173015

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine how fully automated Elecsys CSF immunoassays for ß-amyloid (Aß) and tau biomarkers and an ultrasensitive Simoa assay for neurofilament light chain (NFL) correlate with neuropathologic changes of Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD). METHODS: We studied 101 patients with antemortem CSF and neuropathology data. CSF samples were collected a mean of 2.9 years before death (range 0.2-7.5 years). CSF was analyzed for Aß40, Aß42, total tau (T-tau), tau phosphorylated at amino acid residue 181 (P-tau), P-tau/Aß42 and Aß42/Aß40 ratios, and NFL. Neuropathology measures included Thal phases, Braak stages, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) scores, AD neuropathologic change (ADNC), and primary and contributory pathologic diagnoses. Associations between CSF biomarkers and neuropathologic features were tested in regression models adjusted for age, sex, and time from sampling to death. RESULTS: CSF biomarkers were associated with neuropathologic measures of Aß (Thal, CERAD score), tau (Braak stage), and overall ADNC. The CSF P-tau/Aß42 and Aß42/Aß40 ratios had high sensitivity, specificity, and overall diagnostic performance for intermediate-high ADNC (area under the curve range 0.95-0.96). Distinct biomarker patterns were seen in different FTLD subtypes, with increased NFL and reduced P-tau/T-tau in FTLD-TAR DNA-binding protein 43 and reduced T-tau in progressive supranuclear palsy compared to other FTLD variants. DISCUSSION: CSF biomarkers, including P-tau, T-tau, Aß42, Aß40, and NFL, support in vivo identification of AD neuropathology and correlate with FTLD neuropathology. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that distinct CSF biomarker patterns, including for P-tau, T-tau, Aß42, Aß40, and NFL, are associated with AD and FTLD neuropathology.


Subject(s)
Alzheimer Disease , Frontotemporal Lobar Degeneration , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Autopsy , Biomarkers/cerebrospinal fluid , Frontotemporal Lobar Degeneration/pathology , Humans , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
14.
JAMA Netw Open ; 4(9): e2125584, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34559230

ABSTRACT

Importance: Histone deacetylase inhibitors have been repeatedly shown to elevate progranulin levels in preclinical models. This report describes the first randomized clinical trial of a histone deacetylase inhibitor in frontotemporal dementia (FTD) resulting from progranulin (GRN) gene variations. Objective: To characterize the safety, tolerability, plasma pharmacokinetics, and pharmacodynamic effects of oral FRM-0334 on plasma progranulin and other exploratory biomarkers, including fluorodeoxyglucose (FDG)-positron emission tomography (PET), in individuals with GRN haploinsufficiency. Design, Setting, and Participants: In this randomized, double-blind, placebo-controlled, dose-escalating, phase 2a safety, tolerability, and pharmacodynamic clinical study, 2 doses of a histone deacetylase inhibitor (FRM-0334) were administered to participants with prodromal to moderate FTD with granulin variations. Participants were recruited from January 13, 2015, to April 13, 2016. The study included 27 participants with prodromal (n = 8) or mild-to-moderate symptoms of FTD (n = 19) and heterozygous pathogenic variations in GRN and was conducted at multiple centers in North America, the UK, and the European Union. Data were analyzed from June 9, 2019, to May 13, 2021. Interventions: Daily oral placebo (n = 5), 300 mg of FRM-0334 (n = 11), or 500 mg of FRM-0334 (n = 11) was administered for 28 days. Main Outcomes and Measures: Primary outcomes were safety and tolerability of FRM-0334 and its peripheral pharmacodynamic effect on plasma progranulin. Secondary outcomes were the plasma pharmacokinetic profile of FRM-0334 and its pharmacodynamic effect on cerebrospinal fluid progranulin. Exploratory outcomes were FDG-PET, FTD clinical severity, and cerebrospinal fluid biomarkers (neurofilament light chain [NfL], amyloid ß 1-42, phosphorylated tau 181, and total tau [t-tau]). Results: A total of 27 participants (mean [SD] age, 56.6 [10.5] years; 16 women [59.3%]; 26 White participants [96.3%]) with GRN variations were randomized and completed treatment. FRM-0334 was safe and well tolerated but did not affect plasma progranulin (4.3 pg/mL per day change after treatment; 95% CI, -10.1 to 18.8 pg/mL; P = .56), cerebrospinal fluid progranulin (0.42 pg/mL per day; 95% CI, -0.12 to 0.95 pg/mL; P = .13), or exploratory pharmacodynamic measures. Plasma FRM-0334 exposure did not increase proportionally with dose. Brain FDG-PET data were available in 26 of 27 randomized participants. In a cross-sectional analysis of 26 individuals, bifrontal cortical FDG hypometabolism was associated with worse Clinical Dementia Rating (CDR) plus National Alzheimer's Coordinating Center frontotemporal lobar degeneration sum of boxes score (b = -3.6 × 10-2 standardized uptake value ratio [SUVR] units/CDR units; 95% CI, -4.9 × 10-2 to -2.2 × 10-2; P < .001), high cerebrospinal fluid NfL (b = -9.2 × 10-5 SUVR units/pg NfL/mL; 95% CI, -1.3 × 10-4 to -5.6 × 10-5; P < .001), and high CSF t-tau (-7.2 × 10-4 SUVR units/pg t-tau/mL; 95% CI, -1.4 × 10-3 to -9.5 × 10-5; P = .03). Conclusions and Relevance: In this randomized clinical trial, the current formulation of FRM-0334 did not elevate PRGN levels, which could reflect a lack of efficacy at attained exposures, low bioavailability, or some combination of the 2 factors. Bifrontal FDG-PET is a sensitive measure of symptomatic GRN haploinsufficiency. International multicenter clinical trials of FTD-GRN are feasible. Trial Registration: ClinicalTrials.gov Identifier: NCT02149160.


Subject(s)
Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/genetics , Haploinsufficiency/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Organic Chemicals/therapeutic use , Progranulins/metabolism , Adult , Aged , Biological Availability , Female , Frontotemporal Dementia/metabolism , Histone Deacetylase Inhibitors/adverse effects , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Male , Middle Aged , Organic Chemicals/adverse effects , Organic Chemicals/pharmacokinetics , Progranulins/genetics
15.
Front Neurol ; 12: 694872, 2021.
Article in English | MEDLINE | ID: mdl-34276544

ABSTRACT

Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS; the most common phenotype of corticobasal degeneration) are tauopathies with a relentless course, usually starting in the mid-60s and leading to death after an average of 7 years. There is as yet no specific or disease-modifying treatment. Clinical deficits in PSP are numerous, involve the entire neuraxis, and present as several discrete phenotypes. They center on rigidity, bradykinesia, postural instability, gait freezing, supranuclear ocular motor impairment, dysarthria, dysphagia, incontinence, sleep disorders, frontal cognitive dysfunction, and a variety of behavioral changes. CBS presents with prominent and usually asymmetric dystonia, apraxia, myoclonus, pyramidal signs, and cortical sensory loss. The symptoms and deficits of PSP and CBS are amenable to a variety of treatment strategies but most physicians, including many neurologists, are reluctant to care for patients with these conditions because of unfamiliarity with their multiplicity of interacting symptoms and deficits. CurePSP, the organization devoted to support, research, and education for PSP and CBS, created its CurePSP Centers of Care network in North America in 2017 to improve patient access to clinical expertise and develop collaborations. The directors of the 25 centers have created this consensus document outlining best practices in the management of PSP and CBS. They formed a writing committee for each of 12 sub-topics. A 4-member Steering Committee collated and edited the contributions. The result was returned to the entire cohort of authors for further comments, which were considered for incorporation by the Steering Committee. The authors hope that this publication will serve as a convenient guide for all clinicians caring for patients with PSP and CBS and that it will improve care for patients with these devastating but manageable disorders.

16.
Neurology ; 96(18): e2296-e2312, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33827960

ABSTRACT

OBJECTIVE: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. METHODS: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. RESULTS: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. CONCLUSIONS: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.


Subject(s)
Disease Progression , Frontotemporal Lobar Degeneration/blood , Frontotemporal Lobar Degeneration/diagnostic imaging , Neurofilament Proteins/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/trends , Male , Middle Aged , Predictive Value of Tests , Young Adult
17.
Adv Exp Med Biol ; 1281: 297-310, 2021.
Article in English | MEDLINE | ID: mdl-33433882

ABSTRACT

While behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) remain unrelenting and universally fatal conditions, there is a framework for supportive treatment in patients diagnosed with these frontotemporal dementia (FTD) syndromes and the larger spectrum of clinical syndromes associated with frontotemporal lobar degeneration (FTLD) pathology on autopsy. A managing physician has an important role in weighing therapeutic options, organizing caregiver support, and framing long-term expectations for patients and caregivers. Additionally, a dedicated neurologist may assist patients and caregivers in navigating a growing range of FTD research, including exciting opportunities in clinical therapeutic trials. This chapter will review current therapeutic options for patients with bvFTD and PPA and detail the landscape of potential new disease-modifying therapies targeting the pathophysiology or FTLD.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Pick Disease of the Brain , Autopsy , Frontotemporal Dementia/drug therapy , Frontotemporal Lobar Degeneration/drug therapy , Humans
18.
Alzheimers Dement (Amst) ; 12(1): e12101, 2020.
Article in English | MEDLINE | ID: mdl-33072846

ABSTRACT

INTRODUCTION: Amyloid-related imaging abnormalities (ARIA) are a common, dose-dependent effect of amyloid-targeting antibodies, strongly associated with the apolipoprotein E (APOE) ε4 allele. METHODS: We describe the clinical course and management of a 66-year-old white male (APOE ε4/ε4) enrolled in an observational study that included amyloid and tau positron emission tomography (PET), who received aducanumab through the ENGAGE clinical trial. RESULTS: Acute symptoms included headache and encephalopathy, and magnetic resonance imaging revealed ARIA-E and ARIA-H. Malignant hypertension and epileptiform activity were treated with nicardipine and levetiracetam. Subsequent clinical/imaging worsening prompted a course of methylprednisolone. Symptoms and ARIA-E resolved over 6 months, while ARIA-H persisted. Quantitative analysis of interval amyloid PET showed reduced signal in pre-existing areas but increased signal posteriorly; while tau PET showed increased signal overall. DISCUSSION: In an APOE ε4/ε4 patient, ARIA symptoms were accompanied by malignant hypertension and epileptiform activity, and pulsed steroids reversed edema. Studies from larger cohorts may clarify the optimal treatment and pathophysiology of ARIA.

19.
Neurotherapeutics ; 17(4): 1563-1581, 2020 10.
Article in English | MEDLINE | ID: mdl-32676851

ABSTRACT

Four-repeat tauopathies are a neurodegenerative disease characterized by brain parenchymal accumulation of a specific isoform of the protein tau, which gives rise to a wide breadth of clinical syndromes encompassing diverse symptomatology, with the most common syndromes being progressive supranuclear palsy-Richardson's and corticobasal syndrome. Despite the lack of effective disease-modifying therapies, targeted treatment of symptoms can improve quality of life for patients with 4-repeat tauopathies. However, managing these symptoms can be a daunting task, even for those familiar with the diseases, as they span motor, sensory, cognitive, affective, autonomic, and behavioral domains. This review describes current approaches to symptomatic management of common clinical symptoms in 4-repeat tauopathies with a focus on practical patient management, including pharmacologic and nonpharmacologic strategies, and concludes with a discussion of the history and future of disease-modifying therapeutics and clinical trials in this population.


Subject(s)
Disease Management , Motor Disorders/diagnosis , Motor Disorders/therapy , Tauopathies/diagnosis , Tauopathies/therapy , Clinical Trials as Topic/methods , Forecasting , Humans , Motor Disorders/genetics , Tauopathies/genetics , Treatment Outcome
20.
Mov Disord Clin Pract ; 7(4): 440-447, 2020 May.
Article in English | MEDLINE | ID: mdl-32373661

ABSTRACT

BACKGROUND: Progressive supranuclear palsy (PSP) is a neurodegenerative disease without approved therapies, and therapeutics are often tried off-label in the hope of slowing disease progression. Results from these experiences are seldom shared, which limits evidence-based knowledge to guide future treatment decisions. OBJECTIVES: To describe an open-label experience, including safety/tolerability, and longitudinal changes in biomarkers of disease progression in PSP-Richardson's syndrome (PSP-RS) patients treated with either salsalate or young plasma and compare to natural history data from previous multicenter studies. METHODS: For 6 months, 10 PSP-RS patients received daily salsalate 2,250 mg, and 5 patients received monthly infusions of four units of young plasma. Every 3 months, clinical severity was assessed with the Progressive Supranuclear Palsy Rating Scale (PSPRS), and MRI was obtained for volumetric measurement of midbrain. A range of exploratory biomarkers, including cerebrospinal fluid levels of neurofilament light chain, were collected at baseline and 6 months. Interventional data were compared to historical PSP-RS patients from the davunetide clinical trial and the 4-Repeat Tauopathy Neuroimaging Initiative. RESULTS: Salsalate and young plasma were safe and well tolerated. PSPRS change from baseline (mean ± standard deviation [SD]) was similar in salsalate (+5.6 ± 9.6), young plasma (+5.0 ± 7.1), and historical controls (+5.6 ± 7.1), and change in midbrain volume (cm3 ± SD) did not differ between salsalate (-0.07 ± 0.03), young plasma (-0.06 ± 0.03), and historical controls (-0.06 ± 0.04). No differences were observed between groups on any exploratory endpoint. CONCLUSIONS: Neither salsalate nor young plasma had a detectable effect on disease progression in PSP-RS. Focused open-label clinical trials incorporating historical clinical, neuropsychological, fluid, and imaging biomarkers provide useful preliminary data about the promise of novel PSP-directed therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...