Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 396(2): 272-7, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20399748

ABSTRACT

Chemokine receptors control leukocyte chemotaxis and cell-cell communication but have also been associated with pathogen entry. GPR33, an orphan member of the chemokine-like receptor family, is a pseudogene in most humans. After the appearance of GPR33 in first mammalian genomes, this receptor underwent independent pseudogenization in humans, other hominoids and some rodent species. It was speculated that a likely cause of GPR33 inactivation was its interplay with a rodent-hominoid-specific pathogen. Simultaneous pseudogenization in several unrelated species within the last 1 million years (myr) caused by neutral drift appears to be very unlikely suggesting selection on the GPR33 null-allele. Although there are no signatures of recent selection on human GPR33 we found a significant increase in the pseudogene allele frequency in European populations when compared with African and Asian populations. Because its role in the immune system was still hypothetical expression analysis revealed that GPR33 is highly expressed in dendritic cells (DC). Murine GPR33 expression is regulated by the activity of toll-like receptors (TLR) and AP-1/NF-kappaB signaling pathways in cell culture and in vivo. Our data indicate an important role of GPR33 function in innate immunity which became dispensable during human evolution most likely due to past or balancing selection.


Subject(s)
Immunity, Innate , Receptors, G-Protein-Coupled/physiology , Amino Acid Sequence , Animals , Cells, Cultured , Dendritic Cells/immunology , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Pseudogenes/physiology , Receptors, G-Protein-Coupled/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
2.
Hum Mutat ; 23(3): 285-6, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14974088

ABSTRACT

We used the denaturing gradient gel electrophoresis (DGGE) method to define mutations in the promoter region, the 18 exons, and their flanking intronic sequences of the low-density lipoprotein (LDL) receptor gene LDLR, causing familial hypercholesterolemia (FH) phenotype in 100 German and in 100 Greek hypercholesterolemic individuals. In addition, we tested all patients for the presence of mutations in codons 3456-3553 of the gene encoding apolipoprotein B-100 (APOB). Twenty-six aberrant DGGE patterns were identified and subsequently directly sequenced. In LDLR, two novel missense mutations (c.1957G>T/p.V653F, c.647 G>A/p.C216Y) and one novel homozygous base substitution c.1-156 C>T in the repeat 2 of the promoter region were identified among German FH patients; one novel splice site c.1060+10C>G was identified among Greek FH patients. One of the German FH patients was a carrier for the mutations c.1171G>A/p.A391T and p.V653F, and two of the Greek FH patients were compound heterozygotes for the mutations c.1150C>T/p.Q384X and c.1158C>G/p.D386E. Two German FH patients carried the mutation p.R3500Q within APOB. Comparing the mutations within the LDLR gene of the two European FH populations, the German population seems to be more heterogeneous than the Greek cohort. Further studies in progress are trying to elucidate the responsiveness to drug therapy in association with LDLR genotype and the nutritional habits of the two FH populations.


Subject(s)
Hyperlipoproteinemia Type II/genetics , Adolescent , Adult , Aged , Apolipoprotein B-100 , Apolipoproteins B/genetics , Codon/genetics , DNA Mutational Analysis/methods , Female , Genetic Carrier Screening , Germany , Greece , Humans , Male , Middle Aged , Mutation/genetics , Mutation, Missense/genetics , Promoter Regions, Genetic/genetics , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...