Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; (34): 4164-8, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-16924294

ABSTRACT

The N-heterocyclic-carbene containing cobalt carbonyl compound [Co(IMes)(CO)3(Me)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene), 1, has been synthesised by tertiary phosphine displacement from [Co(PPh3)(CO)3(Me)]. Subsequent carbonylation afforded the acyl derivative [Co(IMes)(CO)3(COMe)], 2. Similarly, the compound [Co(IMes)(CO)3(COEt)], 3, has been synthesised. The compounds 2 and 3 have been shown to react with dihydrogen to form the cobalt hydride compound [Co(IMes)(CO)3(H)], 4. The molecular structures of compounds 1 and 2 have been determined.

2.
Dalton Trans ; (21): 2535-41, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16718337

ABSTRACT

The compound [Fe(eta-C5H5)(CO)2(Me)] reacts thermally with N-heterocyclic carbenes (L) to give both alkyl, [Fe(eta-C5H5)(L)(CO)(Me)], and acyl, [Fe(eta-C5H5)(L)(CO)(COMe)], derivatives. The reaction temperature has been shown to affect the product distribution. The alkyl and acyl derivatives exist in an equilibrium that is more easily perturbed than in the tertiary phosphine analogues. DFT studies on the reactivity of [Fe(eta-C5H5)(CO)2(Me)] with PH3 and dihydroimidazole-2-ylidene (IH) have shown that CO exchange is energetically favoured for IH, and energetically disfavoured for PH3. The products of CO-induced migratory insertion, [Fe(eta-C5H5)(L)(CO)(COMe)], are more stable than the parent alkyl, [Fe(eta-C5H5)(L)(CO)(Me)], compounds. This stabilisation is larger when L = IH than when L = PH3. Stabilisation of the transition state by agostic interactions was seen in both instances, but this was significantly more pronounced for L = IH.

3.
Dalton Trans ; (14): 1776-83, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16568187

ABSTRACT

The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.

SELECTION OF CITATIONS
SEARCH DETAIL