Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Imaging ; 24(1): 111, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164779

ABSTRACT

BACKGROUND: Stereotactic radiotherapy is the preferred treatment for managing patients with fewer than five brain metastases (BMs). However, some lesions recur after irradiation. The purpose of this study was to identify patients who are at a higher risk of failure, which can help in adjusting treatments and preventing recurrence. METHODS: In this retrospective multicenter study, we analyzed the predictive significance of a set of interpretable morphological features derived from contrast-enhanced (CE) T1-weighted MR images as imaging biomarkers using Kaplan-Meier analysis. The feature sets studied included the total and necrotic volumes, the surface regularity and the CE rim width. Additionally, we evaluated other nonmorphological variables and performed multivariate Cox analysis. RESULTS: A total of 183 lesions in 128 patients were included (median age 61 [31-95], 64 men and 64 women) treated with stereotactic radiotherapy (57% single fraction, 43% fractionated radiotherapy). None of the studied variables measured at diagnosis were found to have prognostic value. However, the total and necrotic volumes and the CE rim width measured at the first follow-up after treatment and the change in volume due to irradiation can be used as imaging biomarkers for recurrence. The optimal classification was achieved by combining the changes in tumor volume before and after treatment with the presence or absence of necrosis (p < < 0.001). CONCLUSION: This study demonstrated the prognostic significance of interpretable morphological features extracted from routine clinical MR images following irradiation in brain metastases, offering valuable insights for personalized treatment strategies.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Aged , Retrospective Studies , Prognosis , Adult , Aged, 80 and over , Radiosurgery/methods , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Contrast Media , Kaplan-Meier Estimate
2.
NPJ Syst Biol Appl ; 9(1): 35, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479705

ABSTRACT

Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller, most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the observed data.


Subject(s)
Biological Phenomena , Brain Neoplasms , Humans , Animals , Mice , Brain Neoplasms/therapy , Computer Simulation
3.
Sci Data ; 10(1): 208, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37059722

ABSTRACT

Brain metastasis (BM) is one of the main complications of many cancers, and the most frequent malignancy of the central nervous system. Imaging studies of BMs are routinely used for diagnosis of disease, treatment planning and follow-up. Artificial Intelligence (AI) has great potential to provide automated tools to assist in the management of disease. However, AI methods require large datasets for training and validation, and to date there have been just one publicly available imaging dataset of 156 BMs. This paper publishes 637 high-resolution imaging studies of 75 patients harboring 260 BM lesions, and their respective clinical data. It also includes semi-automatic segmentations of 593 BMs, including pre- and post-treatment T1-weighted cases, and a set of morphological and radiomic features for the cases segmented. This data-sharing initiative is expected to enable research into and performance evaluation of automatic BM detection, lesion segmentation, disease status evaluation and treatment planning methods for BMs, as well as the development and validation of predictive and prognostic tools with clinical applicability.


Subject(s)
Artificial Intelligence , Brain Neoplasms , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Central Nervous System , Magnetic Resonance Imaging/methods , Prognosis
4.
Neurooncol Adv ; 5(1): vdac179, 2023.
Article in English | MEDLINE | ID: mdl-36726366

ABSTRACT

Background: Radiation necrosis (RN) is a frequent adverse event after fractionated stereotactic radiotherapy (FSRT) or single-session stereotactic radiosurgery (SRS) treatment of brain metastases (BMs). It is difficult to distinguish RN from progressive disease (PD) due to their similarities in the magnetic resonance images. Previous theoretical studies have hypothesized that RN could have faster, although transient, growth dynamics after FSRT/SRS, but no study has proven that hypothesis using patient data. Thus, we hypothesized that lesion size time dynamics obtained from growth laws fitted with data from sequential volumetric measurements on magnetic resonance images may help in discriminating recurrent BMs from RN events. Methods: A total of 101 BMs from different institutions, growing after FSRT/SRS (60 PDs and 41 RNs) in 86 patients, displaying growth for at least 3 consecutive MRI follow-ups were selected for the study from a database of 1031 BMs. The 3 parameters of the Von Bertalanffy growth law were determined for each BM and used to discriminate statistically PDs from RNs. Results: Growth exponents in patients with RNs were found to be substantially larger than those of PD, due to the faster, although transient, dynamics of inflammatory processes. Statistically significant differences (P < .001) were found between both groups. The receiver operating characteristic curve (AUC = 0.76) supported the ability of the growth law exponent to classify the events. Conclusions: Growth law exponents obtained from sequential longitudinal magnetic resonance images after FSRT/SRS can be used as a complementary tool in the differential diagnosis between RN and PD.

SELECTION OF CITATIONS
SEARCH DETAIL