Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398323

ABSTRACT

Bone strength is determined not only by bone quantity [bone mineral density (BMD)] but also by bone quality, including matrix composition, collagen fiber arrangement, microarchitecture, geometry, mineralization, and bone turnover, among others. These aspects influence elasticity, the load-bearing and repair capacity of bone, and microcrack propagation and are thus key to fractures and their avoidance. In chronic kidney disease (CKD)-associated osteoporosis, factors traditionally associated with a lower bone mass (advanced age or hypogonadism) often coexist with non-traditional factors specific to CKD (uremic toxins or renal osteodystrophy, among others), which will have an impact on bone quality. The gold standard for measuring BMD is dual-energy X-ray absorptiometry, which is widely accepted in the general population and is also capable of predicting fracture risk in CKD. Nevertheless, a significant number of fractures occur in the absence of densitometric World Health Organization (WHO) criteria for osteoporosis, suggesting that methods that also evaluate bone quality need to be considered in order to achieve a comprehensive assessment of fracture risk. The techniques for measuring bone quality are limited by their high cost or invasive nature, which has prevented their implementation in clinical practice. A bone biopsy, high-resolution peripheral quantitative computed tomography, and impact microindentation are some of the methods established to assess bone quality. Herein, we review the current evidence in the literature with the aim of exploring the factors that affect both bone quality and bone quantity in CKD and describing available techniques to assess them.

2.
Int J Artif Organs ; 32(2): 108-21, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19363783

ABSTRACT

Mineral and bone disorders (MBD) are both an early and very common complication of chronic kidney disease (CKD). It is now accepted that they represent a significant risk factor, explaining the high cardiovascular morbidity and mortality in CKD patients. During the last decade, we have been witnessing many advances in the nomenclature, classification, pathophysiology, diagnosis, and treatment of CKD and some of its complications, such as CKD-MBD. The identification of the calcium-sensing receptor (CaSR) involvement in the pathogenesis of primary and secondary hyperparathyroidism (SHPT) and the availability of a new class of drugs called calcimimetics are two outstanding examples. Cinacalcet, the only available calcimimetic, has been shown to be a very effective therapeutic tool in CKD-MBD. Many clinical trials with cinacalcet in hemodialysis patients with SHPT have shown a reduction in parathyroid hormone, calcium (Ca), phosphate (P) and Ca x P product levels, allowing far greater success in reaching therapeutic goals as recommended by international guidelines. Additionally, some studies have shown that the use of cinacalcet may improve other aspects of CKD-MBD, reducing the risk of vascular calcification and parathyroidectomy, among others. Prospective studies on dialysis patients, with hard endpoint data, are currently underway. This review summarizes the most significant aspects of calcimimimetics based on both experimental and clinical results, underlining their possibilities not only for the treatment of isolated SHPT but also for other CKD-MBD related conditions.


Subject(s)
Bone Diseases/drug therapy , Hyperparathyroidism, Secondary/drug therapy , Kidney Failure, Chronic/drug therapy , Naphthalenes/therapeutic use , Bone Diseases/etiology , Cinacalcet , Humans , Hyperparathyroidism, Secondary/etiology , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/metabolism , Naphthalenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...