Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Top Dev Biol ; 144: 111-159, 2021.
Article in English | MEDLINE | ID: mdl-33992151

ABSTRACT

How flexible are cell identities? This problem has fascinated developmental biologists for several centuries and can be traced back to Abraham Trembley's pioneering manipulations of Hydra to test its regeneration abilities in the 1700s. Since the cell theory in the mid-19th century, developmental biology has been dominated by a single framework in which embryonic cells are committed to specific cell fates, progressively and irreversibly acquiring their differentiated identities. This hierarchical, unidirectional and irreversible view of cell identity has been challenged in the past decades through accumulative evidence that many cell types are more plastic than previously thought, even in intact organisms. The paradigm shift introduced by such plasticity calls into question several other key traditional concepts, such as how to define a differentiated cell or more generally cellular identity, and has brought new concepts, such as distinct cellular states. In this review, we want to contribute to this representation by attempting to clarify the conceptual and theoretical frameworks of cell plasticity and identity. In the context of these new frameworks we describe here an atlas of natural plasticity of cell identity in C. elegans, including our current understanding of the cellular and molecular mechanisms at play. The worm further provides interesting cases at the borderlines of cellular plasticity that highlight the conceptual challenges still ahead. We then discuss a set of future questions and perspectives arising from the studies of natural plasticity in the worm that are shared with other reprogramming and plasticity events across phyla.


Subject(s)
Caenorhabditis elegans , Cell Plasticity , Animals
2.
Elife ; 92020 11 03.
Article in English | MEDLINE | ID: mdl-33138916

ABSTRACT

Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.


Subject(s)
Cell Transdifferentiation , Neuroglia/cytology , Neurons/cytology , Sexual Behavior, Animal , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Calcium/chemistry , Cell Communication , Cell Lineage , Copulation , Female , Male , RNA Interference , Reproduction , Sensory Receptor Cells/cytology , Sex Characteristics
3.
Elife ; 72018 03 22.
Article in English | MEDLINE | ID: mdl-29553368

ABSTRACT

Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Gene Expression Profiling , Serotonergic Neurons/metabolism , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation/genetics , HEK293 Cells , Humans , Mice, Inbred C57BL , Phylogeny , Transcription Factors/classification , Transcription Factors/metabolism
4.
Aging (Albany NY) ; 8(12): 3185-3208, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27794564

ABSTRACT

Centenarians not only enjoy an extraordinary aging, but also show a compression of morbidity. Using functional transcriptomic analysis of peripheral blood mononuclear cells (PMBC) we identified 1721 mRNAs differentially expressed by centenarians when compared with septuagenarians and young people. Sub-network analysis led us to identify Bcl-xL as an important gene up-regulated in centenarians. It is involved in the control of apoptosis, cellular damage protection and also in modulation of immune response, all associated to healthy aging. Indeed, centenarians display lower plasma cytochrome C levels, higher mitochondrial membrane potential and also less cellular damage accumulation than septuagenarians. Leukocyte chemotaxis and NK cell activity are significantly impaired in septuagenarians compared with young people whereas centenarians maintain them. To further ascertain the functional role of Bcl-xL in cellular aging, we found that lymphocytes from septuagenarians transduced with Bcl-xL display a reduction in senescent-related markers. Finally, to demonstrate the role of Bcl-xL in longevity at the organism level, C. elegans bearing a gain of function mutation in the Bcl-xL ortholog ced-9, showed a significant increase in mean and maximal life span. These results show that mRNA expression in centenarians is unique and reveals that Bcl-xL plays an important role in exceptional aging.


Subject(s)
Gene Expression Regulation/physiology , Longevity/physiology , bcl-X Protein/metabolism , Aged , Aged, 80 and over , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Up-Regulation , bcl-X Protein/genetics
5.
Development ; 141(2): 422-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24353061

ABSTRACT

Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Homeodomain Proteins/genetics , Neurons/cytology , Neurons/metabolism , Neuropeptides/genetics , POU Domain Factors/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation/genetics , Cholinergic Neurons/cytology , Cholinergic Neurons/metabolism , Gene Expression Regulation, Developmental , Genes, Helminth , Homeodomain Proteins/metabolism , Interneurons/cytology , Interneurons/metabolism , Larva/cytology , Larva/growth & development , Larva/metabolism , Neurogenesis/genetics , Neurons/classification , Neuropeptides/metabolism , POU Domain Factors/metabolism , Serotonergic Neurons/cytology , Serotonergic Neurons/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL