Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5603, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699929

ABSTRACT

Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.


Subject(s)
Arenaviridae , Lassa virus , Humans , Guinea Pigs , Animals , Lassa virus/genetics , Antibodies, Neutralizing , mRNA Vaccines , Glycoproteins
2.
Cell Host Microbe ; 30(12): 1759-1772.e12, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36400021

ABSTRACT

The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.


Subject(s)
Lassa Fever , Nanoparticles , Guinea Pigs , Rabbits , Animals , Lassa virus/chemistry , Antibodies, Neutralizing , Lassa Fever/prevention & control , Glycoproteins , Vaccines, Synthetic
4.
Sci Rep ; 11(1): 14204, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244543

ABSTRACT

The pandemic of 2019 caused by the novel coronavirus (SARS-CoV-2) is still rapidly spreading worldwide. Nucleic acid amplification serves as the gold standard method for confirmation of COVID-19 infection. However, challenges faced for diagnostic laboratories from undeveloped countries includes shortage of kits and supplies to purify viral RNA. Therefore, it is urgent to validate alternative nucleic acid isolation methods for SARS-CoV-2. Our results demonstrate that a concentrated viral lysis amplification buffer (vLAB) prepared with the nonionic detergent IGEPAL enables qualitative detection of SARS-CoV-2 by direct Reverse Transcriptase-Polymerase Chain Reaction (dRT-PCR). Furthermore, vLAB was effective in inactivating SARS-CoV-2. Since this method is inexpensive and no RNA purification equipment or additional cDNA synthesis is required, this dRT-PCR with vLAB should be considered as an alternative method for qualitative detection of SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Specimen Handling , COVID-19/diagnosis , COVID-19/genetics , Humans , Sensitivity and Specificity
5.
Cell Rep ; 35(5): 109086, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951434

ABSTRACT

New World hantaviruses (NWHs) are endemic in North and South America and cause hantavirus cardiopulmonary syndrome (HCPS), with a case fatality rate of up to 40%. Knowledge of the natural humoral immune response to NWH infection is limited. Here, we describe human monoclonal antibodies (mAbs) isolated from individuals previously infected with Sin Nombre virus (SNV) or Andes virus (ANDV). Most SNV-reactive antibodies show broad recognition and cross-neutralization of both New and Old World hantaviruses, while many ANDV-reactive antibodies show activity for ANDV only. mAbs ANDV-44 and SNV-53 compete for binding to a distinct site on the ANDV surface glycoprotein and show potently neutralizing activity to New and Old World hantaviruses. Four mAbs show therapeutic efficacy at clinically relevant doses in hamsters. These studies reveal a convergent and potently neutralizing human antibody response to NWHs and suggest therapeutic potential for human mAbs against HCPS.


Subject(s)
Antibodies, Monoclonal/immunology , Hantavirus Infections/genetics , Orthohantavirus/pathogenicity , Animals , Cricetinae , Hantavirus Infections/mortality , Humans , Survival Analysis
6.
J Glob Antimicrob Resist ; 19: 294-300, 2019 12.
Article in English | MEDLINE | ID: mdl-31100504

ABSTRACT

OBJECTIVES: This study examined the role of resistance-nodulation-cell division (RND) efflux pumps in resistance to first-generation and third-generation cephalosporins, and the potential contribution to increased virulence in two Vibrio isolates from the gut microbiota of a forage-feeder fish. METHODS: Phenotypic MIC testing was performed in the presence and absence of an RND efflux pump inhibitor, phenylalanine-arginine-beta-napthylamide (PAßN). Genomes of the two Vibrio spp. were compared to characterise RND efflux pump gene homologs. RESULTS: The study identified 13 and 12 RND operons, respectively, in Vibrio spp. T21 and T9, with Vibrio sp. T21 containing an additional RND operon compared with other V. parahaemolyticus strains. Both the inner-membrane protein (IMP) and the membrane facilitator protein (MFP) sequences of this operon were homologous to VexD and VexC, respectively, which is an RND operon in Vibrio cholerae. More generally, the other RND proteins in these strains showed homology to RND efflux pumps characterised in Escherichia coli and Vibrio cholerae. Decreased resistance to cefoperazone and cephradine was observed in Vibrio sp. T21, and to cefoperazone and cefsulodin in Vibrio sp. T9 in the presence of PaßN. The RND pumps may also mediate transport of kanamycin. CONCLUSIONS: By analysing the genomes of two Vibrio spp. isolated from the mummichog fish gut, RND efflux pump-mediated resistance to first-generation and third-generation cephalosporins was discovered in these strains. This work highlights the need for further research into this unique Vibrio spp. operon and, more generally, RND efflux pumps in Vibrio spp., as Vibrio spp. often cause seafood-borne illness.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Cephalosporins/pharmacology , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Membrane Transport Proteins/genetics , Vibrio/genetics , Animals , Bacterial Proteins/genetics , Food Microbiology , Fundulidae/microbiology , Gastrointestinal Tract/microbiology , Microbial Sensitivity Tests , Operon , Vibrio/drug effects , Vibrio/pathogenicity , Virulence
7.
Mar Pollut Bull ; 135: 514-520, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301067

ABSTRACT

Antibiotic resistance is a global public health issue and metal exposure can co-select for antibiotic resistance. We examined genome sequences of three multi-drug and metal resistant bacteria: one Shewanella sp., and two Vibrio spp., isolated from the gut of the mummichog fish (Fundulus heteroclitus). Our primary goal was to understand the mechanisms of co-selection. Phenotypically, the strains showed elevated resistance to arsenate, mercury, and various types of ß-lactams. The genomes contained genes of public health concern including one carbapenemase (blaOXA-48). Our analyses indicate that the co-selection phenotype is mediated by chromosomal resistance genes and cross-resistance. No evidence of co-resistance was found; most resistance genes were chromosomally located. Moreover, the identification of many efflux pump gene homologs indicates that cross-resistance and/or co-regulation may further contribute to resistance. We suggest that the mummichog gut microbiota may be a source of clinically relevant antibiotic resistance genes.


Subject(s)
Bacteria/genetics , Drug Resistance, Microbial/genetics , Fundulidae/microbiology , Gastrointestinal Tract/microbiology , Metals/pharmacology , Water Microbiology , Whole Genome Sequencing , Animals , Bacteria/drug effects , Genes, Bacterial
8.
Curr Microbiol ; 73(6): 834-842, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27620386

ABSTRACT

The emergence and spread of antibiotic-resistant pathogenic bacteria is currently one of the most serious challenges to human health. To combat this problem, it is critical to understand the processes and pathways that result in the creation of antibiotic resistance gene pools in the environment. In this study, we examined the effects of mercury (Hg) exposure on the co-selection of Hg and antibiotic-resistant bacteria that colonize the gastrointestinal tract of the mummichog (Fundulus heteroclitus), a small, estuarine fish. We examined this connection in two experimental systems: (i) a short-term laboratory exposure study where fish were fed Hg-laced food for 15 days and (ii) an examination of environmental populations from two sites with very different levels of Hg contamination. In the lab exposure study, fish muscle tissue accumulation of Hg was proportional to food Hg concentration (R 2 = 0.99; P < 0.0001). In the environmental study, fish from the contaminated site contained threefold more Hg compared to fish from the reference site (P < 0.05). Further, abundance of the Hg resistance gene mercuric reductase was more than eightfold higher (P < 0.0001) in DNA extracts of ingesta of fish from the contaminated site, suggesting adaptation to Hg. Finally, resistance to three or more antibiotics was more common in Hg-resistant as compared to Hg-sensitive bacterial colonies that were isolated from fish ingesta (P < 0.001) demonstrating co-selection of Hg and antibiotic resistances. Together, our results highlight the possibility for the creation of antibiotic resistance gene pools as a result of exposure to Hg in contaminated environments.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/isolation & purification , Drug Resistance, Bacterial , Fundulidae/microbiology , Gastrointestinal Tract/microbiology , Mercury/pharmacology , Animals , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Humans
SELECTION OF CITATIONS
SEARCH DETAIL