Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
PLoS Pathog ; 20(4): e1012171, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683864

ABSTRACT

Researchers and clinicians often rely on molecular assays like PCR to identify and monitor viral infections, instead of the resource-prohibitive gold standard of viral culture. However, it remains unclear when (if ever) PCR measurements of viral load are reliable indicators of replicating or infectious virus. The recent popularity of PCR protocols targeting subgenomic RNA for SARS-CoV-2 has caused further confusion, as the relationships between subgenomic RNA and standard total RNA assays are incompletely characterized and opinions differ on which RNA type better predicts culture outcomes. Here, we explore these issues by comparing total RNA, subgenomic RNA, and viral culture results from 24 studies of SARS-CoV-2 in non-human primates (including 2167 samples from 174 individuals) using custom-developed Bayesian statistical models. On out-of-sample data, our best models predict subgenomic RNA positivity from total RNA data with 91% accuracy, and they predict culture positivity with 85% accuracy. Further analyses of individual time series indicate that many apparent prediction errors may arise from issues with assay sensitivity or sample processing, suggesting true accuracy may be higher than these estimates. Total RNA and subgenomic RNA showed equivalent performance as predictors of culture positivity. Multiple cofactors (including exposure conditions, host traits, and assay protocols) influence culture predictions, yielding insights into biological and methodological sources of variation in assay outcomes-and indicating that no single threshold value applies across study designs. We also show that our model can accurately predict when an individual is no longer infectious, illustrating the potential for future models trained on human data to guide clinical decisions on case isolation. Our work shows that meta-analysis of in vivo data can overcome longstanding challenges arising from limited sample sizes and can yield robust insights beyond those attainable from individual studies. Our analytical pipeline offers a framework to develop similar predictive tools in other virus-host systems, including models trained on human data, which could support laboratory analyses, medical decisions, and public health guidelines.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Viral Load , Animals , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/diagnosis , RNA, Viral/genetics , Primates/virology , Bayes Theorem , Humans , Polymerase Chain Reaction/methods , COVID-19 Nucleic Acid Testing/methods
2.
Elife ; 122024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416804

ABSTRACT

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Male , Mesocricetus , Respiratory Aerosols and Droplets
3.
J Subst Use Addict Treat ; 157: 209228, 2024 02.
Article in English | MEDLINE | ID: mdl-37981239

ABSTRACT

INTRODUCTION: Methamphetamine use is highly prevalent among men who have sex with men (MSM), but knowledge of the long-term dynamics, and how they are affected by substance use treatment, is limited. This study aimed to describe trajectories of methamphetamine use among MSM, and to evaluate the impact of treatment for any kind of substance use on frequency of methamphetamine use. METHODS: This analysis used data from a cohort of MSM in Los Angeles, CA, who participated in semi-annual study visits from 2014 to 2022. The study characterized trajectories of methamphetamine use using a continuous time multistate Markov model with three states. States were defined using self-reported frequency of methamphetamine use in the past six months: frequent (daily), occasional (weekly or less), and never. The model estimated the association between receiving treatment for any kind of substance use and changes in state of frequency of methamphetamine use. RESULTS: This analysis included 2348 study visits among 285 individuals who were followed-up for an average of 4.4 years. Among participants who were in the frequent use state, 65 % (n = 26) of those who were receiving any kind of substance use treatment at a study visit had reduced their methamphetamine use at their next visit, compared to 33 % (n = 95) of those who were not receiving treatment. Controlling for age, race/ethnicity, and HIV-status, those who reported receiving current treatment for substance use were more likely to transition from occasional to no use (HR: 1.63, 95 % CI: 1.10-2.42) and frequent to occasional use (HR: 4.25, 95 % CI: 2.11-8.59) in comparison to those who did not report receiving current treatment for substance use. CONCLUSIONS: Findings from this dynamic modeling study provide a new method for assessing longitudinal methamphetamine use outcomes and add important evidence outside of clinical trials that substance use treatment may reduce methamphetamine use.


Subject(s)
Methamphetamine , Sexual and Gender Minorities , Substance-Related Disorders , Male , Humans , Homosexuality, Male , Los Angeles/epidemiology , Substance-Related Disorders/epidemiology
4.
Sci Rep ; 13(1): 14368, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658075

ABSTRACT

Leptospirosis, the most widespread zoonotic disease in the world, is broadly understudied in multi-host wildlife systems. Knowledge gaps regarding Leptospira circulation in wildlife, particularly in densely populated areas, contribute to frequent misdiagnoses in humans and domestic animals. We assessed Leptospira prevalence levels and risk factors in five target wildlife species across the greater Los Angeles region: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis virginiana), and fox squirrels (Sciurus niger). We sampled more than 960 individual animals, including over 700 from target species in the greater Los Angeles region, and an additional 266 sampled opportunistically from other California regions and species. In the five target species seroprevalences ranged from 5 to 60%, and infection prevalences ranged from 0.8 to 15.2% in all except fox squirrels (0%). Leptospira phylogenomics and patterns of serologic reactivity suggest that mainland terrestrial wildlife, particularly mesocarnivores, could be the source of repeated observed introductions of Leptospira into local marine and island ecosystems. Overall, we found evidence of widespread Leptospira exposure in wildlife across Los Angeles and surrounding regions. This indicates exposure risk for humans and domestic animals and highlights that this pathogen can circulate endemically in many wildlife species even in densely populated urban areas.


Subject(s)
Coyotes , Didelphis , Geraniaceae , Leptospira , Animals , Humans , Leptospira/genetics , Animals, Wild , Ecosystem , Mephitidae , Los Angeles , Animals, Domestic , Raccoons , Sciuridae
5.
Emerg Infect Dis ; 29(10): 2065-2072, 2023 10.
Article in English | MEDLINE | ID: mdl-37735747

ABSTRACT

An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes.


Subject(s)
Body Fluids , Wastewater , Humans , Monkeypox virus/genetics , Wastewater-Based Epidemiological Monitoring , DNA, Viral
6.
Appl Environ Microbiol ; 89(7): e0063323, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37404191

ABSTRACT

Respiratory viruses can be transmitted by multiple modes, including contaminated surfaces, commonly referred to as fomites. Efficient fomite transmission requires that a virus remain infectious on a given surface material over a wide range of environmental conditions, including different relative humidities. Prior work examining the stability of influenza viruses on surfaces has relied upon virus grown in media or eggs, which does not mimic the composition of virus-containing droplets expelled from the human respiratory tract. In this study, we examined the stability of the 2009 pandemic H1N1 (H1N1pdm09) virus on a variety of nonporous surface materials at four different humidities. Importantly, we used virus grown in primary human bronchial epithelial cell (HBE) cultures from different donors to recapitulate the physiological microenvironment of expelled viruses. We observed rapid inactivation of H1N1pdm09 on copper under all experimental conditions. In contrast to copper, viruses were stable on polystyrene plastic, stainless steel, aluminum, and glass, at multiple relative humidities, but greater decay on acrylonitrile butadiene styrene (ABS) plastic was observed at short time points. However, the half-lives of viruses at 23% relative humidity were similar among noncopper surfaces and ranged from 4.5 to 5.9 h. Assessment of H1N1pdm09 longevity on nonporous surfaces revealed that virus persistence was governed more by differences among HBE culture donors than by surface material. Our findings highlight the potential role of an individual's respiratory fluid on viral persistence and could help explain heterogeneity in transmission dynamics. IMPORTANCE Seasonal epidemics and sporadic pandemics of influenza cause a large public health burden. Although influenza viruses disseminate through the environment in respiratory secretions expelled from infected individuals, they can also be transmitted by contaminated surfaces where virus-laden expulsions can be deposited. Understanding virus stability on surfaces within the indoor environment is critical to assessing influenza transmission risk. We found that influenza virus stability is affected by the host respiratory secretion in which the virus is expelled, the surface material on which the droplet lands, and the ambient relative humidity of the environment. Influenza viruses can remain infectious on many common surfaces for prolonged periods, with half-lives of 4.5 to 5.9 h. These data imply that influenza viruses are persistent in indoor environments in biologically relevant matrices. Decontamination and engineering controls should be used to mitigate influenza virus transmission.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/epidemiology , Humidity , Copper , Plastics , Lung
7.
Emerg Infect Dis ; 29(5): 1033-1037, 2023 05.
Article in English | MEDLINE | ID: mdl-37054984

ABSTRACT

SARS-CoV-2 transmits principally by air; contact and fomite transmission may also occur. Variants of concern are more transmissible than ancestral SARS-CoV-2. We found indications of possible increased aerosol and surface stability for early variants of concern, but not for the Delta and Omicron variants. Stability changes are unlikely to explain increased transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Respiratory Aerosols and Droplets
8.
Lancet Infect Dis ; 23(4): 454-462, 2023 04.
Article in English | MEDLINE | ID: mdl-36455590

ABSTRACT

BACKGROUND: More than four decades after the eradication of smallpox, the ongoing 2022 monkeypox outbreak and increasing transmission events of other orthopoxviruses necessitate a greater understanding of the global distribution of susceptibility to orthopoxviruses. We aimed to characterise the current global landscape of smallpox vaccination history and orthopoxvirus susceptibility. METHODS: We characterised the global landscape of smallpox vaccination at a subnational scale by integrating data on current demography with historical smallpox vaccination programme features (coverage and cessation dates) from eradication documents and published literature. We analysed this landscape to identify the factors that were most associated with geographical heterogeneity in current vaccination coverage. We considered how smallpox vaccination history might translate into age-specific susceptibility profiles for orthopoxviruses under different vaccination effectiveness scenarios. FINDINGS: We found substantial global spatial heterogeneity in the landscape of smallpox vaccination, with vaccination coverage estimated to range from 7% to 60% within admin-1 regions (ie, regions one administrative level below country) globally, with negligible uncertainty (99·6% of regions have an SD less than 5%). We identified that geographical variation in vaccination coverage was driven mostly by differences in subnational demography. Additionally, we found that susceptibility for orthopoxviruses was highly age specific based on age at cessation and age-specific coverage; however, the age profile was consistent across vaccine effectiveness values. INTERPRETATION: The legacy of smallpox eradication can be observed in the current landscape of smallpox vaccine protection. The strength and longevity of smallpox vaccination campaigns globally, combined with current demographic heterogeneity, have shaped the epidemiological landscape today, revealing substantial geographical variation in orthopoxvirus susceptibility. This study alerts public health decision makers to non-endemic regions that might be at greatest risk in the case of widespread and sustained transmission in the 2022 monkeypox outbreak and highlights the importance of demography and fine-scale spatial dynamics in predicting future public health risks from orthopoxviruses. FUNDING: US National Institutes of Health and US National Science Foundation.


Subject(s)
Communicable Diseases , Mpox (monkeypox) , Orthopoxvirus , Smallpox Vaccine , Smallpox , Humans , Smallpox/epidemiology , Smallpox/prevention & control , Vaccination
9.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-36032963

ABSTRACT

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.

10.
bioRxiv ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36451892

ABSTRACT

SARS-CoV-2 is transmitted principally via air; contact and fomite transmission may also occur. Variants-of-concern (VOCs) are more transmissible than ancestral SARS-CoV-2. We find that early VOCs show greater aerosol and surface stability than the early WA1 strain, but Delta and Omicron do not. Stability changes do not explain increased transmissibility.

11.
PLoS Comput Biol ; 18(7): e1010308, 2022 07.
Article in English | MEDLINE | ID: mdl-35857774

ABSTRACT

The explosive outbreaks of COVID-19 seen in congregate settings such as prisons and nursing homes, has highlighted a critical need for effective outbreak prevention and mitigation strategies for these settings. Here we consider how different types of control interventions impact the expected number of symptomatic infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a stochastic point process coupled to a branching process, while spread between residents is modeled via a deterministic compartmental model that accounts for depletion of susceptible individuals. Control is modeled as a proportional decrease in the number of susceptible residents, the reproduction number, and/or the proportion of symptomatic infections. This permits a range of assumptions about the density dependence of transmission and modes of protection by vaccination, depopulation and other types of control. We find that vaccination or depopulation can have a greater than linear effect on the expected number of cases. For example, assuming a reproduction number of 3.0 with density-dependent transmission, we find that preemptively reducing the size of the susceptible population by 20% reduced overall disease burden by 47%. In some circumstances, it may be possible to reduce the risk and burden of disease outbreaks by optimizing the way a group of residents are apportioned into distinct residential units. The optimal apportionment may be different depending on whether the goal is to reduce the probability of an outbreak occurring, or the expected number of cases from outbreak dynamics. In other circumstances there may be an opportunity to implement reactive disease control measures in which the number of susceptible individuals is rapidly reduced once an outbreak has been detected to occur. Reactive control is most effective when the reproduction number is not too high, and there is minimal delay in implementing control. We highlight the California state prison system as an example for how these findings provide a quantitative framework for understanding disease transmission in congregate settings. Our approach and accompanying interactive website (https://phoebelu.shinyapps.io/DepopulationModels/) provides a quantitative framework to evaluate the potential impact of policy decisions governing infection control in outbreak settings.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Humans , Infection Control , Nursing Homes , Vaccination
13.
Am J Primatol ; 84(4-5): e23350, 2022 05.
Article in English | MEDLINE | ID: mdl-34878678

ABSTRACT

Infectious zoonotic diseases are a threat to wildlife conservation and global health. They are especially a concern for wild apes, which are vulnerable to many human infectious diseases. As ecotourism, deforestation, and great ape field research increase, the threat of human-sourced infections to wild populations becomes more substantial and could result in devastating population declines. The endangered mountain gorillas (Gorilla beringei beringei) of the Virunga Massif in east-central Africa suffer periodic disease outbreaks and are exposed to infections from human-sourced pathogens. It is important to understand the possible risks of disease introduction and spread in this population and how human contact may facilitate disease transmission. Here we present and evaluate an individual-based, stochastic, discrete-time disease transmission model to predict epidemic outcomes and better understand health risks to the Virunga mountain gorilla population. To model disease transmission we have derived estimates for gorilla contact, interaction, and migration rates. The model shows that the social structure of gorilla populations plays a profound role in governing disease impacts with subdivided populations experiencing less than 25% of the outbreak levels of a single homogeneous population. It predicts that gorilla group dispersal and limited group interactions are strong factors in preventing widespread population-level outbreaks of infectious disease after such diseases have been introduced into the population. However, even a moderate amount of human contact increases disease spread and can lead to population-level outbreaks.


Subject(s)
Ape Diseases , Communicable Diseases , Hominidae , Animals , Animals, Wild , Ape Diseases/epidemiology , Communicable Diseases/epidemiology , Communicable Diseases/veterinary , Gorilla gorilla , Humans
14.
Nat Rev Microbiol ; 20(5): 299-314, 2022 05.
Article in English | MEDLINE | ID: mdl-34799704

ABSTRACT

In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.


Subject(s)
COVID-19 , Chiroptera , Animals , Evolution, Molecular , Humans , Phylogeny , SARS-CoV-2/genetics
15.
PLoS One ; 16(11): e0254467, 2021.
Article in English | MEDLINE | ID: mdl-34818325

ABSTRACT

Cross-species transmission of pathogens is intimately linked to human and environmental health. With limited healthcare and challenging living conditions, people living in poverty may be particularly susceptible to endemic and emerging diseases. Similarly, wildlife is impacted by human influences, including pathogen sharing, especially for species in close contact with people and domesticated animals. Here we investigate human and animal contacts and human health in a community living around the Bwindi Impenetrable National Park (BINP), Uganda. We used contact and health survey data to identify opportunities for cross-species pathogen transmission, focusing mostly on people and the endangered mountain gorilla. We conducted a survey with background questions and self-reported diaries to investigate 100 participants' health, such as symptoms and behaviours, and contact patterns, including direct contacts and sightings over a week. Contacts were revealed through networks, including humans, domestic, peri-domestic, and wild animal groups for 1) contacts seen in the week of background questionnaire completion, and 2) contacts seen during the diary week. Participants frequently felt unwell during the study, reporting from one to 10 disease symptoms at different intensity levels, with severe symptoms comprising 6.4% of the diary records and tiredness and headaches the most common symptoms. After human-human contacts, direct contact with livestock and peri-domestic animals were the most common. The contact networks were moderately connected and revealed a preference in contacts within the same taxon and within their taxa groups. Sightings of wildlife were much more common than touching. However, despite contact with wildlife being the rarest of all contact types, one direct contact with a gorilla with a timeline including concerning participant health symptoms was reported. When considering all interaction types, gorillas mostly exhibited intra-species contact, but were found to interact with five other species, including people and domestic animals. Our findings reveal a local human population with recurrent symptoms of illness in a location with intense exposure to factors that can increase pathogen transmission, such as direct contact with domestic and wild animals and proximity among animal species. Despite significant biases and study limitations, the information generated here can guide future studies, such as models for disease spread and One Health interventions.


Subject(s)
Human-Animal Interaction , Parks, Recreational , Public Health , Zoonoses/transmission , Adult , Aged , Animals , Animals, Wild , Female , Health Surveys , Humans , Male , Middle Aged , Uganda , Young Adult
16.
Viruses ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34578336

ABSTRACT

Syncytium formation, i.e., cell-cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.


Subject(s)
Giant Cells/virology , Henipavirus Infections/virology , Host-Pathogen Interactions , Membrane Fusion , Paramyxoviridae/pathogenicity , HEK293 Cells , Host Specificity , Humans , Virus Attachment , Virus Internalization
17.
medRxiv ; 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34268514

ABSTRACT

While many transmission models have been developed for community spread of respiratory pathogens, less attention has been given to modeling the interdependence of disease introduction and spread seen in congregate settings, such as prisons or nursing homes. As demonstrated by the explosive outbreaks of COVID-19 seen in congregate settings, the need for effective outbreak prevention and mitigation strategies for these settings is critical. Here we consider how interventions that decrease the size of the susceptible populations, such as vaccination or depopulation, impact the expected number of infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a branching process, while spread between residents is modeled via a compartmental model. Control is modeled as a proportional decrease in both the number of susceptible residents and the reproduction number. We find that vaccination or depopulation can have a greater than linear effect on anticipated infections. For example, assuming a reproduction number of 3.0 for density-dependent COVID-19 transmission, we find that reducing the size of the susceptible population by 20% reduced overall disease burden by 47%. We highlight the California state prison system as an example for how these findings provide a quantitative framework for implementing infection control in congregate settings. Additional applications of our modeling framework include optimizing the distribution of residents into independent residential units, and comparison of preemptive versus reactive vaccination strategies.

18.
Appl Environ Microbiol ; 87(19): e0031421, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34288702

ABSTRACT

Decontamination helps limit environmental transmission of infectious agents. It is required for the safe reuse of contaminated medical, laboratory, and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), the virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval [CI] 0.09, 1.77) in closed vials in a heat block to 37.04 min (95% CI 12.64, 869.82) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Given these findings, we reviewed the literature on temperature-dependent coronavirus stability and found that specimen container types, along with whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines. IMPORTANCE Heat is a powerful weapon against most infectious agents. It is widely used for decontamination of medical, laboratory, and personal protective equipment, and for biological samples. There are many methods of heat treatment, and methodological details can affect speed and efficacy of decontamination. We applied four different heat-treatment procedures to liquid specimens containing SARS-CoV-2. Our results show that the container used to store specimens during decontamination can substantially affect inactivation rate; for a given initial level of contamination, decontamination time can vary from a few minutes in closed vials to several hours in uncovered plates. Reviewing the literature, we found that container choices and heat treatment methods are only rarely reported explicitly in methods sections. Our study shows that careful consideration of heat-treatment procedure-in particular the choice of specimen container and whether it is covered-can make results more consistent across studies, improve decontamination practice, and provide insight into the mechanisms of virus inactivation.


Subject(s)
Decontamination/methods , Hot Temperature , Personal Protective Equipment/statistics & numerical data , SARS-CoV-2/physiology , Specimen Handling/methods , Virus Inactivation , Decontamination/instrumentation , Reproducibility of Results , Specimen Handling/instrumentation
19.
J Zoo Wildl Med ; 52(1): 38-48, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33827159

ABSTRACT

The spirochete bacterium Leptospira interrogans serovar Pomona is enzootic to California sea lions (CSL; Zalophus californianus) and causes periodic epizootics. Leptospirosis in CSL is associated with a high fatality rate in rehabilitation. Evidence-based tools for estimating prognosis and guiding early euthanasia of animals with a low probability of survival are critical to reducing the severity and duration of animal suffering. Classification and regression tree (CART) analysis of clinical data was used to predict survival outcomes of CSL with leptospirosis in rehabilitation. Classification tree outputs are binary decision trees that can be readily interpreted and applied by a clinician. Models were trained using data from cases treated from 2017 to 2018 at The Marine Mammal Center in Sausalito, CA, and tested against data from cases treated from 2010 to 2012. Two separate classification tree analyses were performed, one including and one excluding data from euthanized animals. When data from natural deaths and euthanasias were included in model-building, the best classification tree predicted outcomes correctly for 84.7% of cases based on four variables: appetite over the first 3 days in care, and blood urea nitrogen (BUN), creatinine, and sodium at admission. When only natural deaths were included, the best model predicted outcomes correctly for 87.6% of cases based on BUN and creatinine at admission. This study illustrates that CART analysis can be successfully applied to wildlife in rehabilitation to establish evidence-based euthanasia criteria with the goal of minimizing animal suffering. In the context of a large epizootic that challenges the limits of a facility's capacity for care, the models can assist in maximizing allocation of resources to those animals with the highest predicted probability of survival. This technique may be a useful tool for other diseases seen in wildlife rehabilitation.


Subject(s)
Leptospirosis/veterinary , Sea Lions/microbiology , Aging , Animals , Animals, Wild , Disease Outbreaks , Kidney/microbiology , Leptospira interrogans/isolation & purification , Leptospirosis/microbiology , Leptospirosis/pathology , Leptospirosis/urine , Prognosis , Regression Analysis
20.
Trends Microbiol ; 29(7): 593-605, 2021 07.
Article in English | MEDLINE | ID: mdl-33893024

ABSTRACT

Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.


Subject(s)
COVID-19/virology , Disease Reservoirs/veterinary , Ecology , Evolution, Molecular , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , Chiroptera/virology , Disease Reservoirs/virology , Humans , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...